+0

# Math Challenge #something

+1
500
11
+349

I have lost track of these things...

Anyway, here is a problem that isn't that hard, really.

GIVEN:

a and b are real numbers

$$a+b=10$$

$$a^2+b^2=44$$

Find $$a^3+b^3$$

Oh, and last time, the question was declared answered after a moderator aswered it, so if possible, please don't declare this question answered so than people can solve it.

I encourage everyone who reads this to not look at the other people's answer, so that you can solve it yourself.

Aug 10, 2017
edited by Mathhemathh  Aug 10, 2017
edited by Mathhemathh  Aug 10, 2017

### Best Answer

#3
+20847
+2

GIVEN:

a and b are real numbers

$$a+b = 10 \\ a^2+b^2 = 44$$

Find $$a^3 + b^3$$

$$\begin{array}{|rcll|} \hline (a+b)^2 &=& a^2 + 2ab + b^2 \\ (a+b)^2 &=& (a^2 + b^2) +2ab \\ (10)^2 &=& (44) + 2ab \\ 100 &=& 44 + 2ab \quad & | \quad : 2 \\ 50 &=& 22 + ab \\ ab &=& 50-22 \\ \mathbf{ab} & \mathbf{=} & \mathbf{28} \\\\ (a^2+b^2)(a+b) &=& a^3 +a^2b + b^2a + b^3 \\ (a^2+b^2)(a+b) &=& a^3 +b^3 + ab(a+b) \\ 44\cdot 10 &=& a^3 +b^3 + 28\cdot 10 \\ 440 &=& a^3 +b^3 + 280 \\ a^3 +b^3 &=& 440 - 280 \\ \mathbf{ a^3 +b^3} & \mathbf{=} & \mathbf{160} \\ \hline \end{array}$$

Aug 10, 2017
edited by heureka  Aug 10, 2017

### 7+0 Answers

#1
0

a = 5 - i sqrt(3) ≈ 5.00000 - 1.73205 i and b = 5 + i sqrt(3) ≈ 5.00000 + 1.73205 i
a = 5 + i sqrt(3) ≈ 5.00000 + 1.73205 i and b = 5 - i sqrt(3) ≈ 5.00000 - 1.73205 i

Simplify the following:
(-(i sqrt(3)) + 5)^3 + (i sqrt(3) + 5)^3

(-(i sqrt(3)) + 5)^3 = (-(i sqrt(3)) + 5) (-(i sqrt(3)) + 5)^2:
(-(i sqrt(3)) + 5) (-(i sqrt(3)) + 5)^2 + (i sqrt(3) + 5)^3

(-(i sqrt(3)) + 5)^2 = 25 - 5 i sqrt(3) - 5 i sqrt(3) - 3 = 22 - 10 i sqrt(3):
(-(i sqrt(3)) + 5) -10 i sqrt(3) + 22 + (i sqrt(3) + 5)^3

(-i sqrt(3) + 5) (-10 i sqrt(3) + 22) = 5×22 + 5 (-10 i sqrt(3)) + -i sqrt(3)×22 + -i sqrt(3) (-10 i sqrt(3)) = 110 + -50 i sqrt(3) + -22 i sqrt(3) - 30 = -72 i sqrt(3) + 80:
-72 i sqrt(3) + 80 + (i sqrt(3) + 5)^3

(i sqrt(3) + 5)^3 = (i sqrt(3) + 5) (i sqrt(3) + 5)^2:
80 - 72 i sqrt(3) + (i sqrt(3) + 5) (i sqrt(3) + 5)^2

(i sqrt(3) + 5)^2 = 25 + 5 i sqrt(3) + 5 i sqrt(3) - 3 = 22 + 10 i sqrt(3):
80 - 72 i sqrt(3) + (i sqrt(3) + 5) 10 i sqrt(3) + 22

(i sqrt(3) + 5) (10 i sqrt(3) + 22) = 5×22 + 5×10 i sqrt(3) + i sqrt(3)×22 + i sqrt(3)×10 i sqrt(3) = 110 + 50 i sqrt(3) + 22 i sqrt(3) - 30 = 72 i sqrt(3) + 80:
80 - 72 i sqrt(3) + 72 i sqrt(3) + 80

80 - 72 i sqrt(3) + 80 + 72 i sqrt(3) = 160:
Answer: | 160

Aug 10, 2017
#2
+349
+1

#mindblown

#overcomplicated

#i'mimpressed

I don't understand that behemoth of a solution because I was too lazy to read it, but you got the right answer, except there is a much, MUCH simpler solution.

Mathhemathh  Aug 10, 2017
#3
+20847
+2
Best Answer

GIVEN:

a and b are real numbers

$$a+b = 10 \\ a^2+b^2 = 44$$

Find $$a^3 + b^3$$

$$\begin{array}{|rcll|} \hline (a+b)^2 &=& a^2 + 2ab + b^2 \\ (a+b)^2 &=& (a^2 + b^2) +2ab \\ (10)^2 &=& (44) + 2ab \\ 100 &=& 44 + 2ab \quad & | \quad : 2 \\ 50 &=& 22 + ab \\ ab &=& 50-22 \\ \mathbf{ab} & \mathbf{=} & \mathbf{28} \\\\ (a^2+b^2)(a+b) &=& a^3 +a^2b + b^2a + b^3 \\ (a^2+b^2)(a+b) &=& a^3 +b^3 + ab(a+b) \\ 44\cdot 10 &=& a^3 +b^3 + 28\cdot 10 \\ 440 &=& a^3 +b^3 + 280 \\ a^3 +b^3 &=& 440 - 280 \\ \mathbf{ a^3 +b^3} & \mathbf{=} & \mathbf{160} \\ \hline \end{array}$$

heureka Aug 10, 2017
edited by heureka  Aug 10, 2017
#4
+349
0

Good job.

Mathhemathh  Aug 11, 2017
#6
+468
0

UM HUMM UM UM HUMM

AsadRehman  Aug 11, 2017
#5
+468
+1

a = 5 - i sqrt(3) ≈ 5.00000 - 1.73205 i and b = 5 + i sqrt(3) ≈ 5.00000 + 1.73205 i
a = 5 + i sqrt(3) ≈ 5.00000 + 1.73205 i and b = 5 - i sqrt(3) ≈ 5.00000 - 1.73205 i

Simplify the following:
(-(i sqrt(3)) + 5)^3 + (i sqrt(3) + 5)^3

(-(i sqrt(3)) + 5)^3 = (-(i sqrt(3)) + 5) (-(i sqrt(3)) + 5)^2:
(-(i sqrt(3)) + 5) (-(i sqrt(3)) + 5)^2 + (i sqrt(3) + 5)^3

(-(i sqrt(3)) + 5)^2 = 25 - 5 i sqrt(3) - 5 i sqrt(3) - 3 = 22 - 10 i sqrt(3):
(-(i sqrt(3)) + 5) -10 i sqrt(3) + 22 + (i sqrt(3) + 5)^3

(-i sqrt(3) + 5) (-10 i sqrt(3) + 22) = 5×22 + 5 (-10 i sqrt(3)) + -i sqrt(3)×22 + -i sqrt(3) (-10 i sqrt(3)) = 110 + -50 i sqrt(3) + -22 i sqrt(3) - 30 = -72 i sqrt(3) + 80:
-72 i sqrt(3) + 80 + (i sqrt(3) + 5)^3

(i sqrt(3) + 5)^3 = (i sqrt(3) + 5) (i sqrt(3) + 5)^2:
80 - 72 i sqrt(3) + (i sqrt(3) + 5) (i sqrt(3) + 5)^2

(i sqrt(3) + 5)^2 = 25 + 5 i sqrt(3) + 5 i sqrt(3) - 3 = 22 + 10 i sqrt(3):
80 - 72 i sqrt(3) + (i sqrt(3) + 5) 10 i sqrt(3) + 22

(i sqrt(3) + 5) (10 i sqrt(3) + 22) = 5×22 + 5×10 i sqrt(3) + i sqrt(3)×22 + i sqrt(3)×10 i sqrt(3) = 110 + 50 i sqrt(3) + 22 i sqrt(3) - 30 = 72 i sqrt(3) + 80:
80 - 72 i sqrt(3) + 72 i sqrt(3) + 80

80 - 72 i sqrt(3) + 80 + 72 i sqrt(3) = 160:                                      SO THE ANSWER IS 160

Aug 11, 2017
#11
+349
0

Right.

Mathhemathh  Aug 14, 2017

### New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.