1. In triangle ABC, AB=12 units and AC=9 units. Point D is on segment BC so that BD:DC=2:1. If AD=6 units, what is the length of segment BC? Express your answer in simplest radical form.
1. In triangle ABC, AB=12 units and AC=9 units. Point D is on segment BC so that BD:DC=2:1. If AD=6 units, what is the length of segment BC? Express your answer in simplest radical form.
Let BC = x
cos rule:
\(\begin{array}{|lrcll|} \hline & 6^2 &=& 9^2+(\frac13 x)^2 - 2\cdot 9 \cdot \frac 13 x \cos( C ) \\ & 6^2 &=& 9^2+(\frac13 x)^2 - 6 x \cos( C ) \\ & 6 x \cos( C ) &=& 9^2-6^2+\frac{x^2}{9} \\ (1) & 6 x \cos( C ) &=& 45+\frac{x^2}{9} \\ \hline \end{array}\)
cos rule:
\(\begin{array}{|lrcll|} \hline & 12^2 &=& 9^2+x^2 - 2\cdot 9 \cdot x \cos( C ) \\ & 12^2 &=& 9^2+x^2 - 18 x \cos( C ) \\ & 18 x \cos( C ) &=& 9^2-12^2+x^2 \\ & 18 x \cos( C ) &=& x^2-63 \quad & | \quad : 3 \\ (2) & 6 x \cos( C ) &=& \frac{x^2}{3}-21 \\ \hline \end{array} \)
(2) = (1):
\(\begin{array}{|rcll|} \hline 6 x \cos( C ) = \frac{x^2}{3}-21 &=& 45+\frac{x^2}{9} \\ \frac{x^2}{3}-21 &=& 45+\frac{x^2}{9} \\ x^2(\frac13-\frac19) &=& 66 \\ x^2(\frac{9-3}{27}) &=& 66 \\ x^2(\frac{6}{27}) &=& 66 \\ x^2 &=& 66\cdot (\frac{27}{6}) \\ x^2 &=& 11\cdot 27 \\ x^2 &=& 11\cdot 3^2 \cdot 3 \\ \mathbf{ x} & \mathbf{=} & \mathbf{3\sqrt{33}} \\ \hline \end{array}\)
The length of segment BC is \(\mathbf{3\sqrt{33}}\)
Thanks, heureka....here's my approach....
Using the Law of Cosines we have that
12^2 = (2CD)^2 + 6^2 - [ 2 * 2CD * 6 ] cos BDA
144 = 4CD^2 + 36 - 24CDcosBDA
108 - 4CD^2 = - 24CDcosBDA
[ 4CD^2 - 108 ] / 24CD = cos BDA
[CD^2 - 27 ] / 6CD =cos BDA
Since BDA and CDA are supplementary.....-cos BDA = cosCDA
Using it again and substituting, we have
9^2 = CD^2 + 6^2 - [ 2 * CD * 6 ] [-cos BDA]
81 = CD^2 + 36 + 12CD [ CD^2 - 27] / 6CD ]
45 = CD^2 + 2[CD^2 - 27 ]
45 = CD^2 + 2CD^2 - 54
99 = 3CD^2
33 = CD^2
√33 = CD
And BD is twice this
So
BD + CD = BC = √33 + 2√33 = 3√33
Here's a pic :