+0

# math geometry

0
269
2
+3836

1. In triangle ABC, AB=12 units and AC=9 units. Point D is on segment BC so that BD:DC=2:1. If AD=6 units, what is the length of segment BC? Express your answer in simplest radical form.

Mar 14, 2018

### 2+0 Answers

#1
+21242
+1

1. In triangle ABC, AB=12 units and AC=9 units. Point D is on segment BC so that BD:DC=2:1. If AD=6 units, what is the length of segment BC? Express your answer in simplest radical form.

Let BC = x

cos rule:

$$\begin{array}{|lrcll|} \hline & 6^2 &=& 9^2+(\frac13 x)^2 - 2\cdot 9 \cdot \frac 13 x \cos( C ) \\ & 6^2 &=& 9^2+(\frac13 x)^2 - 6 x \cos( C ) \\ & 6 x \cos( C ) &=& 9^2-6^2+\frac{x^2}{9} \\ (1) & 6 x \cos( C ) &=& 45+\frac{x^2}{9} \\ \hline \end{array}$$

cos rule:

$$\begin{array}{|lrcll|} \hline & 12^2 &=& 9^2+x^2 - 2\cdot 9 \cdot x \cos( C ) \\ & 12^2 &=& 9^2+x^2 - 18 x \cos( C ) \\ & 18 x \cos( C ) &=& 9^2-12^2+x^2 \\ & 18 x \cos( C ) &=& x^2-63 \quad & | \quad : 3 \\ (2) & 6 x \cos( C ) &=& \frac{x^2}{3}-21 \\ \hline \end{array}$$

(2) = (1):

$$\begin{array}{|rcll|} \hline 6 x \cos( C ) = \frac{x^2}{3}-21 &=& 45+\frac{x^2}{9} \\ \frac{x^2}{3}-21 &=& 45+\frac{x^2}{9} \\ x^2(\frac13-\frac19) &=& 66 \\ x^2(\frac{9-3}{27}) &=& 66 \\ x^2(\frac{6}{27}) &=& 66 \\ x^2 &=& 66\cdot (\frac{27}{6}) \\ x^2 &=& 11\cdot 27 \\ x^2 &=& 11\cdot 3^2 \cdot 3 \\ \mathbf{ x} & \mathbf{=} & \mathbf{3\sqrt{33}} \\ \hline \end{array}$$

The length of segment BC is $$\mathbf{3\sqrt{33}}$$

Mar 15, 2018
edited by heureka  Mar 15, 2018
#2
+95969
+1

Thanks, heureka....here's my approach....

Using the Law of Cosines we have that

12^2 = (2CD)^2 + 6^2  -  [ 2 * 2CD * 6 ] cos BDA

144 = 4CD^2  + 36 - 24CDcosBDA

108 - 4CD^2  = - 24CDcosBDA

[ 4CD^2 - 108 ] / 24CD  = cos BDA

[CD^2 - 27 ] / 6CD  =cos BDA

Since BDA  and CDA  are supplementary.....-cos BDA  =  cosCDA

Using it again and substituting, we have

9^2 = CD^2 + 6^2  - [ 2 * CD * 6 ] [-cos BDA]

81  = CD^2 + 36 + 12CD  [ CD^2 - 27] / 6CD ]

45 = CD^2 + 2[CD^2 - 27 ]

45 = CD^2 + 2CD^2 - 54

99 = 3CD^2

33 = CD^2

√33 = CD

And  BD  is twice this

So

BD + CD  =  BC  =  √33  + 2√33  =   3√33

Here's a pic :

Mar 15, 2018

### New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.