+0  
 
0
60
2
avatar+2352 

1. In triangle ABC, AB=12 units and AC=9 units. Point D is on segment BC so that BD:DC=2:1. If AD=6 units, what is the length of segment BC? Express your answer in simplest radical form. 

tertre  Mar 14, 2018
Sort: 

2+0 Answers

 #1
avatar+19207 
+1

1. In triangle ABC, AB=12 units and AC=9 units. Point D is on segment BC so that BD:DC=2:1. If AD=6 units, what is the length of segment BC? Express your answer in simplest radical form. 

 

Let BC = x

 

cos rule:

\(\begin{array}{|lrcll|} \hline & 6^2 &=& 9^2+(\frac13 x)^2 - 2\cdot 9 \cdot \frac 13 x \cos( C ) \\ & 6^2 &=& 9^2+(\frac13 x)^2 - 6 x \cos( C ) \\ & 6 x \cos( C ) &=& 9^2-6^2+\frac{x^2}{9} \\ (1) & 6 x \cos( C ) &=& 45+\frac{x^2}{9} \\ \hline \end{array}\)

 

cos rule:

\(\begin{array}{|lrcll|} \hline & 12^2 &=& 9^2+x^2 - 2\cdot 9 \cdot x \cos( C ) \\ & 12^2 &=& 9^2+x^2 - 18 x \cos( C ) \\ & 18 x \cos( C ) &=& 9^2-12^2+x^2 \\ & 18 x \cos( C ) &=& x^2-63 \quad & | \quad : 3 \\ (2) & 6 x \cos( C ) &=& \frac{x^2}{3}-21 \\ \hline \end{array} \)

 

(2) = (1):

\(\begin{array}{|rcll|} \hline 6 x \cos( C ) = \frac{x^2}{3}-21 &=& 45+\frac{x^2}{9} \\ \frac{x^2}{3}-21 &=& 45+\frac{x^2}{9} \\ x^2(\frac13-\frac19) &=& 66 \\ x^2(\frac{9-3}{27}) &=& 66 \\ x^2(\frac{6}{27}) &=& 66 \\ x^2 &=& 66\cdot (\frac{27}{6}) \\ x^2 &=& 11\cdot 27 \\ x^2 &=& 11\cdot 3^2 \cdot 3 \\ \mathbf{ x} & \mathbf{=} & \mathbf{3\sqrt{33}} \\ \hline \end{array}\)

 

The length of segment BC is \(\mathbf{3\sqrt{33}}\)

 

laugh

heureka  Mar 15, 2018
edited by heureka  Mar 15, 2018
 #2
avatar+85821 
+1

Thanks, heureka....here's my approach....

 

Using the Law of Cosines we have that

 

12^2 = (2CD)^2 + 6^2  -  [ 2 * 2CD * 6 ] cos BDA

144 = 4CD^2  + 36 - 24CDcosBDA

108 - 4CD^2  = - 24CDcosBDA

[ 4CD^2 - 108 ] / 24CD  = cos BDA

[CD^2 - 27 ] / 6CD  =cos BDA

 

Since BDA  and CDA  are supplementary.....-cos BDA  =  cosCDA

 

Using it again and substituting, we have

 

9^2 = CD^2 + 6^2  - [ 2 * CD * 6 ] [-cos BDA]

81  = CD^2 + 36 + 12CD  [ CD^2 - 27] / 6CD ]

45 = CD^2 + 2[CD^2 - 27 ]

45 = CD^2 + 2CD^2 - 54

99 = 3CD^2

33 = CD^2

√33 = CD

 

And  BD  is twice this

 

So

BD + CD  =  BC  =  √33  + 2√33  =   3√33

 

Here's a pic :

 

 

 

 

 

 

 

cool cool cool

CPhill  Mar 15, 2018

34 Online Users

avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details