+0

0
491
9

1.) Find the first ten digits after the decimal point in the decimal expansion of $\frac{10}{27}=0.abcdefghij\ldots$

without a calculator.

2.) The number $\frac{12}{13}$ can be expressed as a repeating decimal $0.\overline{abcdef}$. Find the repeating part $abcdef$ without a calculator.

3.) Convert $0.04\overline{55}$ to a fraction in simplest form.

4.) Convert $6032_8$ to decimal.

5.) Convert $999_{16}$ to decimal.

6.) Convert 35 from base 10 to base 2.

(You do not need to include the subscript 2 in this answer.)

7.) Convert $2231_4$ to base 2 without first converting to decimal.

(You do not need to include the subscript 2 in this answer.)

All help Appreciated(ASAP if possible)

Jun 16, 2019

#1
-1

OK, IM guessing this is from AoPS from the dollar signs...... I don't really mind the asking and I would solve it but can you edit it so the latex is in latex???????? ok so this is my version of it...:

1.) Find the first ten digits after the decimal point in the decimal expansion of $$\frac{10}{27}=0.abcdefghij\ldots$$

without a calculator.

2.) The number $$\frac{12}{13}$$ can be expressed as a repeating decimal $$0.\overline{abcdef}$$. Find the repeating part $$abcdef$$ without a calculator.

3.) Convert $$0.04\overline{55}$$ to a fraction in simplest form.

4.) Convert $$6032_8$$ to decimal.

5.) Convert $$999_{16}$$ to decimal.

6.) Convert 35 from base 10 to base 2.

(You do not need to include the subscript 2 in this answer.)

7.) Convert $$2231_4$$ to base 2 without first converting to decimal.

Jun 17, 2019
edited by NoobGuest  Jun 17, 2019
#2
-1

1) one is kinda easy..... just start dividing and find a pattern. I found the pattern 0.370 repeating, and so your answer for 1 would be 0.3703703703

2)So I started manually dividing and after 6 digits, I stopped... I want to show it here but have no idea how... :( but your answer is 923076

3)to convert 0.045 repeating 5 to fraction form, just do this:

1000x=45.55555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555

- x=0.045555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555

_____________________________________________________________________________________________________

subtract and get 999x=45.1

x=451/9990

x=41/90

4) $$6032_8$$ to decimal?! argh! ok, so start by doing (6*6^3)+(0*6^2)+(3*6^1)+(2*6^0)=1407.... and 1407 is 6032_8 in base 10.... in other words, decimal.

5)$$999__16$$ok I cant get the base thing to work in latex... so deal with this.

(9*16^2)+(9*16)+9=2457 in decimal..

6)35/2=17r1

17/2=8r1

8/2=4r0

4/2=2r0

2/2=1r0

1/2=0r1

so i think 35 in base 2 is 100011

7)10101101...

NoobGuest  Jun 17, 2019
#3
0

1) $$\dfrac{10}{27} = \dfrac{370}{999} = 0.\overline{370} = 0.370\;370\;370\;3...$$

.
Jun 22, 2019
#4
0

2) $$\dfrac{12}{13} = \dfrac{923076}{999999} = 0.\overline{923076}$$

.
Jun 22, 2019
edited by MaxWong  Jun 22, 2019
#5
0

3)

$$\quad0.04\overline{55}\\ = 0.04 + 0.00\overline{5}\\ = \dfrac{4}{100} + \dfrac{0.\overline{5}}{100}\\ = \dfrac{4}{100} + \dfrac{5}{900}\\ = \dfrac{41}{900}$$

.
Jun 22, 2019
#6
0

4)

$$\quad 6032_8\\ = 6\cdot 8^3 + 3\cdot 8 + 2\\ = 3098$$

.
Jun 22, 2019
edited by MaxWong  Jun 22, 2019
#7
0

5)

$$\quad 999_{16}\\ = 9(16^2 + 16 + 1)\\ = 2457$$

.
Jun 22, 2019
#8
0

6)

$$35 = 2^5 + 2^1 + 2^0\\ 35 = 100011_2$$

.
Jun 22, 2019
#9
0

7)

$$\quad 2231_4\\ = 10101101_2$$

.
Jun 22, 2019
edited by MaxWong  Jun 22, 2019