Find the value of\($\sqrt{a}\cdot\sqrt{a+6}\cdot\sqrt{b}\cdot\sqrt{b+6}$ for $(a,b)=(7,91)$.\)
Plugging in the values,
\(\sqrt{7} \cdot \sqrt{13} \cdot \sqrt{91} \cdot \sqrt{97}\)
\(\sqrt{91} \cdot \sqrt{91} \cdot \sqrt{97}\)
So we get \(91\sqrt{97}\) as the answer
Plugging in the values,
\(\sqrt{7} \cdot \sqrt{13} \cdot \sqrt{91} \cdot \sqrt{97}\)
\(\sqrt{91} \cdot \sqrt{91} \cdot \sqrt{97}\)
So we get \(91\sqrt{97}\) as the answer