+0  
 
0
126
2
avatar

What is the constant term in the expansion of $(x^4+x+5)(x^5+x^3+15)$?

Guest Dec 4, 2014

Best Answer 

 #2
avatar
+5

$$x^4*x^5=x^9$$

$${{\mathtt{x}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{3}}} = {{\mathtt{x}}}^{{\mathtt{7}}}$$

$$x^4*15=15x^4$$

$$x*x^5=x^6$$

$$x*x^3=x^4$$

$$x*15=15x$$

$$5*x^5=5x^5$$

$$5*x^3=5x^3$$

$$5*15=75$$

simplify gives you $$x^9+x^7+x^6+5x^5+16x^4+5x^3+75$$

Guest Dec 4, 2014
Sort: 

2+0 Answers

 #1
avatar+80983 
+5

The constant term is just the product of the two constant terms in each polynomial....thus 15 * 5 = 75

 

 

CPhill  Dec 4, 2014
 #2
avatar
+5
Best Answer

$$x^4*x^5=x^9$$

$${{\mathtt{x}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{3}}} = {{\mathtt{x}}}^{{\mathtt{7}}}$$

$$x^4*15=15x^4$$

$$x*x^5=x^6$$

$$x*x^3=x^4$$

$$x*15=15x$$

$$5*x^5=5x^5$$

$$5*x^3=5x^3$$

$$5*15=75$$

simplify gives you $$x^9+x^7+x^6+5x^5+16x^4+5x^3+75$$

Guest Dec 4, 2014

5 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details