+0  
 
0
41
1
avatar

The quadratic -6x^2+36x+216 can be written in the form a(x+b)^2+c, where a, b, and c are constants. What is a+b+c?

Guest Jun 26, 2018

Best Answer 

 #1
avatar+19653 
+1

The quadratic -6x^2+36x+216 can be written in the form a(x+b)^2+c,

where a, b, and c are constants.

What is a+b+c?

 

\(\begin{array}{|rcll|} \hline && -6x^2+36x+216 \\ &=& -6(x^2-6x) + 216 \\ &=& -6[ (x-3)^2 -9 ] +216 \\ &=& -6(x-3)^2 + 6\cdot 9 + 216 \\ &=& -6(x-3)^2 +54 + 216 \\ &=& -6(x-3)^2 + 270 \quad & | \quad \text{compare with $a(x+b)^2+c$} \\\\ a &=& -6 \\ b &=& -3 \\ c &=& 270 \\ a+b+c &=& -6-3+270 \\ \mathbf{a+b+c} & \mathbf{=}&\mathbf{ 261 } \\ \hline \end{array}\)

 

laugh

heureka  Jun 26, 2018
 #1
avatar+19653 
+1
Best Answer

The quadratic -6x^2+36x+216 can be written in the form a(x+b)^2+c,

where a, b, and c are constants.

What is a+b+c?

 

\(\begin{array}{|rcll|} \hline && -6x^2+36x+216 \\ &=& -6(x^2-6x) + 216 \\ &=& -6[ (x-3)^2 -9 ] +216 \\ &=& -6(x-3)^2 + 6\cdot 9 + 216 \\ &=& -6(x-3)^2 +54 + 216 \\ &=& -6(x-3)^2 + 270 \quad & | \quad \text{compare with $a(x+b)^2+c$} \\\\ a &=& -6 \\ b &=& -3 \\ c &=& 270 \\ a+b+c &=& -6-3+270 \\ \mathbf{a+b+c} & \mathbf{=}&\mathbf{ 261 } \\ \hline \end{array}\)

 

laugh

heureka  Jun 26, 2018

12 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.