+0  
 
0
141
3
avatar+163 

\(\dfrac{\sqrt{3x}-4\sqrt{3}}{\sqrt{x}-\sqrt{2}}=\dfrac{2\sqrt{2x}+\sqrt{2}}{\sqrt{6x}-2\sqrt{3}}\)

Creeperhissboom  Apr 3, 2018
 #1
avatar
-1

What do you want done with this? Simplify it? Solve for x? .........etc.

Guest Apr 3, 2018
 #2
avatar+3270 
+2

Is it possible to cross multiply?

tertre  Apr 3, 2018
 #3
avatar+93866 
+3

\(\dfrac{\sqrt{3x}-4\sqrt{3}}{\sqrt{x}-\sqrt{2}}=\dfrac{2\sqrt{2x}+\sqrt{2}}{\sqrt{6x}-2\sqrt{3}}\\ firstly \qquad x\ne2\qquad \\ (\sqrt{3x}-4\sqrt{3})(\sqrt{6x}-2\sqrt{3})=(2\sqrt{2x}+\sqrt{2})(\sqrt{x}-\sqrt{2})\\ (\sqrt{18x^2}-2*3\sqrt{x}-4\sqrt{18x}+8*3)=(2x\sqrt{2}-4\sqrt{x}+\sqrt{2x}-2)\\ 3x\sqrt{2}-6\sqrt{x}-12\sqrt{2x}+24=2x\sqrt{2}-4\sqrt{x}+\sqrt{2x}-2\\ x\sqrt{2}-2\sqrt{x}-13\sqrt{2x}+26=0\\ \)

 

\(x\sqrt{2}-2\sqrt{x}-13\sqrt{2x}+26=0\\ let\;\;x=y^2\\ \sqrt2y^2-(2+13\sqrt2)y+26=0\\ \text{Now you can solve for y (use quadratic formula)}\\ \text{Hence solve for x}\\ \text{Just be suspicious of the answers, with all this squaring and square rooting}\\\text{ there is bound to be some hoax answers.}\)

Melody  Apr 3, 2018

10 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.