We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
215
1
avatar+299 

1.)

Factor the polynominal function over the complex numbers

 

f(x)=x^4-x^3-2x-4

 

 

2.)

Enter the number of complex zeros for the polynomial function in the box.

 

f(x)=x^5+4x^3-5x

 

3.)

What are the zeros od the polynomial function?

 

f(x)=x^4+2x^3-16x^2-2x+15

 

Select each correct answer.

 

-5

-1

0

1

3

5

 

 

Thank you (:

 Oct 24, 2018
 #1
avatar+5800 
+1

\(x^4 -x^3 - 2x - 4 = (x^4-4)-(x^3+2x) = \\ (x^2-2)(x^2+2) - x(x^2+2) = \\ (x^2+2)(x^2-x-2)=\\ (x+\sqrt{2}i)(x-\sqrt{2}i)(x-2)(x+1)\)

 

2) A fifth degree polynomial will have 5 complex zeros

 

3) \(x^4+2x^3-16x^2-2x+15 = \\ (x^4-16x^2+15) +(2x^3-2x) =\\ (x^2-15)(x^2-1)+2x(x^2-1) = \\ (x^2+2x-15)(x^2-1) = \\ (x-3)(x+5)(x-1)(x+1) \\ \\ \text{and the zeros can be read off as }\\ \\ x=3,~-5,~1,~-1\)

.
 Oct 24, 2018

22 Online Users

avatar