+0  
 
+1
34
1
avatar+216 

1.)

Factor the polynominal function over the complex numbers

 

f(x)=x^4-x^3-2x-4

 

 

2.)

Enter the number of complex zeros for the polynomial function in the box.

 

f(x)=x^5+4x^3-5x

 

3.)

What are the zeros od the polynomial function?

 

f(x)=x^4+2x^3-16x^2-2x+15

 

Select each correct answer.

 

-5

-1

0

1

3

5

 

 

Thank you (:

Johnnyboy  Oct 24, 2018
 #1
avatar+2714 
+1

\(x^4 -x^3 - 2x - 4 = (x^4-4)-(x^3+2x) = \\ (x^2-2)(x^2+2) - x(x^2+2) = \\ (x^2+2)(x^2-x-2)=\\ (x+\sqrt{2}i)(x-\sqrt{2}i)(x-2)(x+1)\)

 

2) A fifth degree polynomial will have 5 complex zeros

 

3) \(x^4+2x^3-16x^2-2x+15 = \\ (x^4-16x^2+15) +(2x^3-2x) =\\ (x^2-15)(x^2-1)+2x(x^2-1) = \\ (x^2+2x-15)(x^2-1) = \\ (x-3)(x+5)(x-1)(x+1) \\ \\ \text{and the zeros can be read off as }\\ \\ x=3,~-5,~1,~-1\)

Rom  Oct 24, 2018

18 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.