+0  
 
0
334
3
avatar

Use Mathematical Induction to prove: a+b is a factor of a^2n+1 + b^2n+1

Guest Jan 5, 2015

Best Answer 

 #2
avatar+88898 
+10

First, let us show that it is true for n=1

So....a^(2(1) + 1) + b^(2(1) + 1)  =  a^3 + b^3  =  (a +b)(a^2 -ab + b^2)...and (a + b) is a factor

Now, let us assume it is true for  k=1, that is, a^(2(k) + 1) + b^(2(k) + 1) is true

Now, let's prove that it is true for k + 1

So we have

a^(2(k+1)+ 1) + b^(2(k+1) + 1) =

a^(2k + 3) + b^(2k + 3) =

a^3*a^(2k)  + b^3*b^(2k)......and using   a^3  =  (a +b)(a^2 -ab + b^2) - b^3 , we can write

[(a+b)(a^2 -ab + b^2) - b^3]a^(2k)  + b^3*b^(2k)  =

(a+b)(a^2 -ab + b^2)a^(2k) - b^3[ a^(2k) -  b^(2k)]

Notice that the last term is a difference of two even powers.........and it can be shown that the difference of two even powers can be factored with (a + b) as a factor thusly...

(a^(2n) - b^(2n)) = (a + b)[a^(2n-1) - a^(2n-2)b + a^(2n-3)b^2 - a^(2n-4)b^3 +.....+ ab^(2n-2) - b^(2n-1) ]

Thus, (a+b) is a factor of both terms, so (a +b) is a factor of a^(2k + 3) + b^(2k + 3)

 

CPhill  Jan 5, 2015
 #1
avatar+93351 
0

Could  the person who posted this please insert brackets to clarify the meaning?

Melody  Jan 5, 2015
 #2
avatar+88898 
+10
Best Answer

First, let us show that it is true for n=1

So....a^(2(1) + 1) + b^(2(1) + 1)  =  a^3 + b^3  =  (a +b)(a^2 -ab + b^2)...and (a + b) is a factor

Now, let us assume it is true for  k=1, that is, a^(2(k) + 1) + b^(2(k) + 1) is true

Now, let's prove that it is true for k + 1

So we have

a^(2(k+1)+ 1) + b^(2(k+1) + 1) =

a^(2k + 3) + b^(2k + 3) =

a^3*a^(2k)  + b^3*b^(2k)......and using   a^3  =  (a +b)(a^2 -ab + b^2) - b^3 , we can write

[(a+b)(a^2 -ab + b^2) - b^3]a^(2k)  + b^3*b^(2k)  =

(a+b)(a^2 -ab + b^2)a^(2k) - b^3[ a^(2k) -  b^(2k)]

Notice that the last term is a difference of two even powers.........and it can be shown that the difference of two even powers can be factored with (a + b) as a factor thusly...

(a^(2n) - b^(2n)) = (a + b)[a^(2n-1) - a^(2n-2)b + a^(2n-3)b^2 - a^(2n-4)b^3 +.....+ ab^(2n-2) - b^(2n-1) ]

Thus, (a+b) is a factor of both terms, so (a +b) is a factor of a^(2k + 3) + b^(2k + 3)

 

CPhill  Jan 5, 2015
 #3
avatar+93351 
0

This is one I want to look at properly.  If only there were  infinite hours in each day :)

THEN we could all procrastinate forever and it would not make one iota of difference :)

Melody  Jan 5, 2015

35 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.