We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
132
2
avatar

The equation of the plane through the points triple A = (1,-2,1), B = (-3,1,4), C = (1,1,2) can be written as ax + by + cz = 13. What is the ordered triple      (a, b, c)? 

 Aug 15, 2019
 #1
avatar+23273 
+3

The equation of the plane through the points triple A = (1,-2,1), B = (-3,1,4), C = (1,1,2) can be written as ax + by + cz = 13. 

What is the ordered triple   (a, b, c)? 

 

Formula:  \(\vec{x} = \vec{C} + r(\vec{A}-\vec{C}) +s(\vec{B}-\vec{C})\)

 

\(\begin{array}{|lrcll|} \hline & \mathbf{\vec{x}} &=& \mathbf{ \vec{C} + r(\vec{A}-\vec{C}) +s(\vec{B}-\vec{C}) } \\ & \begin{pmatrix} x\\ y\\ z \end{pmatrix} &=&\begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix} +r\left(\begin{pmatrix} 1\\ -2\\ 1 \end{pmatrix}-\begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}\right) +s\left(\begin{pmatrix} -2\\ 1\\ 4 \end{pmatrix}-\begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}\right) \\ & \begin{pmatrix} x\\ y\\ z \end{pmatrix} &=&\begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix} +r \begin{pmatrix} 0\\ -3\\ -1 \end{pmatrix} +s \begin{pmatrix} -4\\ 0\\ 2 \end{pmatrix} \\ \hline (1) & x &=& 1-4s \\ & 4s &=& 1-x \\ & \mathbf{s} &=& \mathbf{\dfrac{1}{4}(1-x)} \\\\ (2) & y &=& 1-3r \\ & 3r &=& 1-y \\ & \mathbf{r} &=& \mathbf{\dfrac{1}{3}(1-y)} \\\\ (3) & z &=& 2-r+2s \\ & z &=& 2-\dfrac{1}{3}(1-y)+\dfrac{2}{4}(1-x) \\ & z &=& 2-\dfrac{1}{3}(1-y)+\dfrac{1}{2}(1-x) \quad | \quad \cdot 6 \\ & 6z &=& 12-\dfrac{6}{3}(1-y)+\dfrac{6}{2}(1-x) \\ & 6z &=& 12-2(1-y)+3(1-x) \\ & 6z &=& 12-2+2y+3-3x \\ & \mathbf{3x-2y+6z } &=& \mathbf{13} \\ \hline \end{array}\)

 

\((a,\ b,\ c) = (3,\ -2,\ 6)\)

 

laugh

 Aug 15, 2019
 #2
avatar+28176 
+3

If you are familiar with matrix solutions of simultaneous linear equations, the following matrix solution is an alternative way of tackling this problem:

 

 

(NB  I've deliberately left out the detail and just sketched the approach for those who are familiar with matrix manipulations.)

.

 Aug 15, 2019
edited by Alan  Aug 15, 2019

29 Online Users

avatar