+0  
 
+1
1582
3
avatar+4622 

Portia solved the quadratic equation \(x^2+(2\sqrt3)x+1=0\)  by completing the square. In the process, she came up with the equivalent equation \((x+r)^2 = s,\) where \(r\) \(s\) and  are constants.

What is \(s\)?

 Mar 11, 2017

Best Answer 

 #2
avatar+129899 
+6

x^2 + 2sqrt(3)x + 1  = 0

 

x^2 + 2sqrt(3)x  = - 1         

 

Take (1/2) of 2sqrt(3)  = sqrt(3)....square this = 3   add to both sides

 

x^2 + 2sqrt(3)x + 3 =  -1 + 3      simpify and factor

 

(x  + sqrt(3) )^2   =    2

 

r =  sqrt(3), s = 2

 

 

 

cool cool cool

 Mar 11, 2017
 #1
avatar+4622 
-1

Where is says " r s and are constants", it's actually " r and s are constants

 Mar 11, 2017
 #2
avatar+129899 
+6
Best Answer

x^2 + 2sqrt(3)x + 1  = 0

 

x^2 + 2sqrt(3)x  = - 1         

 

Take (1/2) of 2sqrt(3)  = sqrt(3)....square this = 3   add to both sides

 

x^2 + 2sqrt(3)x + 3 =  -1 + 3      simpify and factor

 

(x  + sqrt(3) )^2   =    2

 

r =  sqrt(3), s = 2

 

 

 

cool cool cool

CPhill Mar 11, 2017
 #3
avatar+4622 
+6

Thanks so much!

 Mar 11, 2017

1 Online Users