+0  
 
0
74
2
avatar

Question 1: What is the product of all constants \(k \) such that the quadratic \(x^2 + kx +15\) can be factored in the form \((x+a)(x+b)\), where a and b are integers?

Question 2: Find all values of x such that \(\dfrac{x}{x+4} = -\dfrac{9}{x+3}\) .

Question 3: Find all real numbers \(x\) that satisfy the equation \((x-4)(x-8) = 12\).

Question 4: Find all real values of  \(x\) that satisfy the equation: \( x^2 - 7x = 98. \)

 Dec 2, 2018
 #1
avatar+15350 
+2

The numbers   a   and  b   must multiply to 15    and add to k

a   b        can be        added =k

1  15                             16

3   5                                8

-1  -15                           -16

-3   -5                              -8

 

all of the k's multiplied results in   16384

 

2

Cross multiply to get

x^2 +3x = -9x-36

x^2+12x+36=0

(x+6)(x+6) = 0    x = - 6

      

 

3

x^2 -12x +32 -12 = 0

    x^2-12x+20 = 0

    (x-10)(x-2) = 0     so x = 10 or 2

 

4

x^2-7x -98 =0    use quadratic formula to find x = 14  or -7

 Dec 2, 2018
edited by Guest  Dec 2, 2018
edited by Guest  Dec 2, 2018
 #2
avatar+3738 
+2

3. Let's try by completing the square. We simplify the original expression, to \(x^2-12x=-20\). Then, solve for \(a\) while completing the square, so \(2ax=-12x, a=-6\) . Finally, you end up with \(\left(x-6\right)^2=16\), therefore the only solutions are \(\boxed{x=2, x=10}\) .

 Dec 2, 2018

7 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.