+0  
 
0
422
1
avatar

cos(6x)=sqrt3sin(6x)

 Feb 21, 2016
 #1
avatar+129849 
0

cos(6x)=sqrt3sin(6x)    

 

sqaure both sides

 

cos^2(6x)  = 3sin^2(6x)

 

cos^2(6x)  = 3 [ 1 - cos^2(6x)]

 

cos^2(6x)  = 3  - 3cos^2(6x)     re-arrange as

 

4cos^2(6x) - 3  =  0      factor this as

 

[2cos(6x) + √3 ] [ 2 cos(6x) - √3] = 0

 

Setting the first factor to 0 we have

 

2cos(6x) + √3  = 0

 

cos(6x)  = -√3 / 2

 

cos(x)  = -√3 / 2   at      150° + n*360°      and  at  210° + n*360°    where n is an integer

 

Dividing each of these by 6, we have :

 

x = 25° + n* 60°      and  x = 35° + n* 60°

 

As will be shown shortly.....only the second solution is good......the first is an extraneous solution produced by squaring both sides of the original equation

 

 

Settintg the second factor to 0 , we have

 

2cos(6x) - √3  = 0

 

cos(6x)  = √3 / 2

 

cos(x)  = √3 / 2      at   30° + n * 360°     and  at 330°  + n*360°

 

Dividing each of these by 6 we have :

 

x = 5° + n* 60°     and  x = 55° + n* 60°

 

For the same reason as above, only the first solution is good.

 

Here's a graph of the solutions on the interval  [ 0, 360 ]°

 

https://www.desmos.com/calculator/ywvf0g7bxs

 

 

cool cool cool

 Feb 21, 2016

2 Online Users

avatar