+0  
 
0
115
2
avatar

Consider the following two strings of digits: $11001010100101011$ and $110100011000100$. First consider them to be in base $10$ and sum them to get $n$. Then consider them to be in binary, sum them, write the answer in binary, then interpret the digits of the sum as if they were in base $10$ to get $m$. What is $n-m$?

 Dec 22, 2020
 #1
avatar
0

This is just a computation problem: n = 11201201201221012 and m = 835718428, so n - m = 11201200365502584.

 Dec 28, 2020
 #2
avatar+112863 
+1

the wording is strange but this is how I have interpreted it.

 

11 001 010 100 101 011 +    Base 10

    110 100 011 000 100        Base 10

11 111 110 111 101 111           n

 

11 001 010 100 101 011 +    Base 2

    110 100 011 000 100        Base 2

11 111 110 111 101 111             m

 

n-m=0

 Dec 28, 2020

10 Online Users

avatar