Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+2
948
2
avatar+221 

:) 

 

 

 

http://prntscr.com/j35u6u

 

Someone else asked this question, but I'm also confused, could someone explain how this integral was obtained. I don't understand where the 1- part comes from

 Apr 10, 2018
 #1
avatar+26396 
+2

http://prntscr.com/j35u6u


Someone else asked this question, but I'm also confused, could someone explain how this integral was obtained.
I don't understand where the 1- part comes from

4D0dσ σ2 e2σ= ?

 

1. Apply Integration By Parts:
Formula:

 

Let u=σ2 u=2σLet v=e2σ v=dσ e2σ=12e2σ

D0dσ σ2=u e2σ=v=[σ2=u(12e2σ)=v]D0D0dσ 2σ=u(12e2σ)=v=[12e2σσ2]D0+D0dσ e2σσ=12e2DD2+D0dσ e2σσ

 

2. Apply Integration By Parts:

Let u=σ u=1Let v=e2σ v=dσ e2σ=12e2σ

D0dσ e2σ=vσ=u=[σ=u(12e2σ)=v]D0D0dσ 1=u(12e2σ)=v=D(12e2D)+D0dσ 12e2σ=12e2DD+12D0dσ e2σ=12e2DD+12[12e2σ]D0=12e2DD+12[12e2D(12e20)]=12e2DD+12[12e2D(12e0)]=12e2DD+12[12e2D(121)]=12e2DD+12[12e2D+12]=12e2DD14e2D+14

 

4D0dσ σ2e2σ=4[12e2DD212e2DD14e2D+14]=2e2DD22e2DDe2D+1=e2D(2D2+2D+1)+1=1e2D(2D2+2D+1)

 

 

laugh

 Apr 10, 2018
 #2
avatar+429 
0

i agree with heureka

jakesplace  Apr 10, 2018

2 Online Users

avatar
avatar