+0  
 
0
471
1
avatar

(c) sin(2x) − 4 sin(x) = 0 (d) 4cos2(θ)−cos(θ)−2=0

Guest Dec 3, 2015

Best Answer 

 #1
avatar+90084 
+10

(c) sin(2x) − 4 sin(x) = 0     simplify

 

2sinxcosx - 4sinx = 0      factor

 

2sinx [ cosx - 2] = 0        the second factor has no solution

 

So

 

2sinx = 0      divide both sides by  2

 

sinx =  0      and this occurs at  [0 + n*180] °   where n is an integer

 

 

 

 

(d) 4cos2(θ)−cos(θ)−2=0       simplify

 

4[2cos^2 (θ) - 1] - cos (θ)  - 2  = 0

 

8cos^2 (θ) - cos (θ)  - 6   = 0

 

Let x = cos(θ)

 

8x^2 - x - 6  = 0

 

Using the quadratic formula, the solutions to this are  x = [1 - sqrt(193)] /16    and x = [1 + sqrt(193)]/ 16

 

So

 

cos (θ)  =  [1 - sqrt(193)] /16       or    cos (θ ) = [1 +sqrt(193)] /16

 

Taking the cosine inverse to find both angles, we have

 

(θ)  =   about 143.685°     and (θ)  = about 21.444°  

 

There are also two more angles on (0, 360)  at about 216.3°   and about  338.6°

 

Here's the graph of this one......it has an odd periodicity.......https://www.desmos.com/calculator/pwgqsyrurd

 

 

cool cool cool

CPhill  Dec 3, 2015
 #1
avatar+90084 
+10
Best Answer

(c) sin(2x) − 4 sin(x) = 0     simplify

 

2sinxcosx - 4sinx = 0      factor

 

2sinx [ cosx - 2] = 0        the second factor has no solution

 

So

 

2sinx = 0      divide both sides by  2

 

sinx =  0      and this occurs at  [0 + n*180] °   where n is an integer

 

 

 

 

(d) 4cos2(θ)−cos(θ)−2=0       simplify

 

4[2cos^2 (θ) - 1] - cos (θ)  - 2  = 0

 

8cos^2 (θ) - cos (θ)  - 6   = 0

 

Let x = cos(θ)

 

8x^2 - x - 6  = 0

 

Using the quadratic formula, the solutions to this are  x = [1 - sqrt(193)] /16    and x = [1 + sqrt(193)]/ 16

 

So

 

cos (θ)  =  [1 - sqrt(193)] /16       or    cos (θ ) = [1 +sqrt(193)] /16

 

Taking the cosine inverse to find both angles, we have

 

(θ)  =   about 143.685°     and (θ)  = about 21.444°  

 

There are also two more angles on (0, 360)  at about 216.3°   and about  338.6°

 

Here's the graph of this one......it has an odd periodicity.......https://www.desmos.com/calculator/pwgqsyrurd

 

 

cool cool cool

CPhill  Dec 3, 2015

42 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.