+0  
 
+1
44
1
avatar+427 

What are the solutions to the system of equations?

y=−x2−5x−6

x+y=−3

 

Choices:

(−3, 0) and (−1,−2)

(−3, 0) ​and (−2, 0)

(−3, 0) ​and​ (−2,−1) ​

(−2, 0) and​ (−1,−2) ​

 Dec 18, 2018

Best Answer 

 #1
avatar+3729 
+3

I think you mean: \(y=x^2-5x-6\) and \(x+y=-3.\) Taking \(x\) to the other side in our second equation, we have \(y=-3-x\) . This means \(-x^2-5x-6=-3-x\), so by using the quadratic formula, we get \(x=-3,\:x=-1.\)

From here, first by plugging \(x=-3\) in the second equation to solve for \(y\), we get      \(​​-3+y=-3, y=-3+3, y=0.\) Consequently, by plugging in \(x=-1\)\(\), we get    \(-1+y=-3, y=-3+1, y=-2.\) Finally, our two ordered pairs are \(\boxed{(-3,0), (-1,-2)}\) , so (A) or the first option. 

 Dec 18, 2018
 #1
avatar+3729 
+3
Best Answer

I think you mean: \(y=x^2-5x-6\) and \(x+y=-3.\) Taking \(x\) to the other side in our second equation, we have \(y=-3-x\) . This means \(-x^2-5x-6=-3-x\), so by using the quadratic formula, we get \(x=-3,\:x=-1.\)

From here, first by plugging \(x=-3\) in the second equation to solve for \(y\), we get      \(​​-3+y=-3, y=-3+3, y=0.\) Consequently, by plugging in \(x=-1\)\(\), we get    \(-1+y=-3, y=-3+1, y=-2.\) Finally, our two ordered pairs are \(\boxed{(-3,0), (-1,-2)}\) , so (A) or the first option. 

tertre Dec 18, 2018

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.