We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
82
1
avatar

John noticed that the angle formed by the minute hand and hour hand on a standard 12-hour clock was 110 degrees when he left home after 6 p.m.; it was also 110 degrees when he returned before 7 p.m. that same night. If he left home for more than five minutes, for how many minutes was he away?

 Jul 19, 2019
 #1
avatar+22896 
+3

John noticed that the angle formed by the minute hand and hour hand on a standard 12-hour clock

was 110 degrees when he left home after 6 p.m.;

it was also 110 degrees when he returned before 7 p.m. that same night.

If he left home for more than five minutes, for how many minutes was he away?

 

\(\text{Let the angle formed by the minute hand and hour hand in degrees $\mathbf{ \Delta \alpha }$ } \\ \text{Let the time in hours $\mathbf{ t }$ }\)

 

The formula between the two values \(\Delta \alpha \) and \(t\) is:

\(\boxed{~ \Delta \alpha +360^\circ \cdot n = 330 \cdot t ,\ n\in \mathbb{Z} \\or\\ (360^\circ-\Delta \alpha) +360^\circ \cdot m = 330 \cdot t ,\ m\in \mathbb{Z}~ } \)

 

\(\begin{array}{|rl|rl|} \hline n & t = \dfrac{110^\circ +360^\circ \cdot n} {330} & m & t = \dfrac{(360^\circ-110^\circ) +360^\circ \cdot m} {330} \\ \hline \ldots&&\ldots \\ 5 & 5^h\ 47^m\ 16^s.\overline{36} & 4 & 5^h\ 7^m\ 16^s.\overline{36} \\ 6 & \mathbf{6^h\ 52^m\ 43^s.\overline{63}} & 5 & \mathbf{6^h\ 12^m\ 43^s.\overline{63}} \\ 7 & 7^h\ 58^m\ 10^s.\overline{90} & 6 & 7^h\ 18^m\ 10^s.\overline{90} \\ \ldots&&\ldots \\ \hline \end{array} \)

 

He was between \(6^h\ 12^m\ 43^s.\overline{63}\) and \(6^h\ 52^m\ 43^s.\overline{63}\) away.
So he left home for exact \(\mathbf{40}\) minutes

 

laugh

 Jul 19, 2019

15 Online Users