Prove by induction: 12 + 32 + 52 + ... + (2n - 1)2 = [n(2n - 1)(2n + 1)]/3
1^2 + 3^2 + 5^2 + ... + (2n - 1)^2 = [n(2n - 1)(2n + 1)]/3
First....let us show it is true for, n = 1......that is.....
1^2 = [ (1) ( 1) ( 3) ] / 3 = [ 3/3] = 1
1^2 = 1 and it's true......
Now, assume that it's true for n = k ........that is......
1^2 + 3^2 + 5^2 + ... + (2k - 1)^2 = [k(2k - 1)(2k + 1)]/3 (1)
So, prove that it's true for n = k + 1 .......that is
1^2 + 3^2 + 5^2 + ...+ (2k-1)^2 + (2(k+1) -1)^2 = [(k+ 1)(2k+ 1)(2k + 3)]/3 ...or...put more simply...
1^2 + 3^2 + 5^2 + ... + (2k - 1)^2 + (2k + 1)^2 = [ (2k + 1) (2k + 3) (k + 1) ] / 3
....so we have.....
[Add (2(k+ 1) -1)^2 to both sides of (1) ]
1^2 + 3^2 + 5^2 + ... + (2k - 1)^2 + (2 (k + 1) -1)^2 = [k(2k - 1)(2k + 1)]/3 + (2(k + 1) - 1)^2
Simplify
1^2 + 3^2 + 5^2 + ... + (2k - 1)^2 + (2k + 1)^2 = [k(2k - 1)(2k + 1)]/3 + (2k + 1)^2
Get a common denominator on the right side
1^2 + 3^2 + 5^2 + ... + (2k - 1)^2 + (2k + 1)^2 = [ (k) (2k-1) (2k + 1) + 3(2k + 1)^2 ] /3
Factor out (2k + 1) in the numerator on the right
1^2 + 3^2 + 5^2 + ... + (2k - 1)^2 + (2k + 1)^2 = [ (2k + 1) [ k (2k - 1) + 3(2k + 1)] ]/ 3
Simplify that numerator
1^2 + 3^2 + 5^2 + ... + (2k - 1)^2 + (2k + 1)^2 = [ (2k + 1) ( 2k^2 - k + 6k + 3) ] / 3
1^2 + 3^2 + 5^2 + ... + (2k - 1)^2 + (2k + 1)^2 = [ (2k + 1) (2k^2 + 5k + 3) ] / 3
Factor (2k^2 + 5k + 3 ) as (2k + 3) (k + 1)
1^2 + 3^2 + 5^2 + ... + (2k - 1)^2 + (2k + 1)^2 = [ (2k + 1) (2k + 3) (k + 1) ] / 3
Which is exactly what we wanted to prove......