+0  
 
0
701
2
avatar+4622 

The center of the circle with equation \(x^2+y^2=8x-6y-20\)  is the point (x,y) . What is x+y ?

 Mar 14, 2017

Best Answer 

 #1
avatar+9479 
+6

\(x^2+y^2=8x-6y-20 \\ x^2-8x+y^2+6y=-20 \\ x^2-8x+16+y^2+6y+9=-20+16+9 \\ (x-4)(x-4)+(y+3)(y+3)=5 \\ (x-4)^2 + (y+3)^2 = 5\)

 

So the center is located at (4,-3)

4 + (-3) = 4 - 3 = 1

 Mar 14, 2017
 #1
avatar+9479 
+6
Best Answer

\(x^2+y^2=8x-6y-20 \\ x^2-8x+y^2+6y=-20 \\ x^2-8x+16+y^2+6y+9=-20+16+9 \\ (x-4)(x-4)+(y+3)(y+3)=5 \\ (x-4)^2 + (y+3)^2 = 5\)

 

So the center is located at (4,-3)

4 + (-3) = 4 - 3 = 1

hectictar Mar 14, 2017
 #2
avatar+4622 
0

Bingo!

 Mar 14, 2017

4 Online Users

avatar