We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
33
3
avatar

What is unit digit of 7^2018

 May 8, 2019
 #1
avatar+122 
0

To solve this problem, find the pattern of the powers of 7. 7^1 is 7, 7^2 is 9(units' digit), and so on.

 

We'll get...

 

7

9

3

1

7

9

3

1

and so on...

 

So 7^2018's unit digit is 9.

 

~~Hypotenuisance

 May 8, 2019
 #2
avatar+22180 
+1

What is unit digit of 7^2018

 

\(\begin{array}{|rcll|} \hline && \mathbf{{\color{red}7}^{2018} \pmod{10}}\\ &&&\boxed{ {\color{red}7} \pmod{10} \\ \equiv 7-10 \pmod{10} \\ \equiv {\color{green}-3} \pmod{10} } \\ &\equiv& \left({\color{green}-3}\right)^{2018} \pmod{10} \\ &\equiv& (-1)^{2018}3^{2018} \pmod{10} \\ &\equiv& \mathbf{3^{2018} \pmod{10}} \\ &&&\boxed{{\color{blue}3^2} \pmod{10} \\ \equiv 9 \pmod{10} \\ \equiv 9-10 \pmod{10}\\ \equiv {\color{brown}-1} \pmod{10}} \\ &\equiv& \left({\color{blue}3^2}\right)^{1009} \pmod{10} \\ &\equiv& \left({\color{brown}-1}\right)^{1009} \pmod{10} \\ &\equiv& -1 \pmod{10} \\ &\equiv& -1+10 \pmod{10} \\ &\equiv& \mathbf{9 \pmod{10}} \\ \hline \end{array} \)

 

The unit digit of \(\mathbf{7^{2018}}\) is 9

 

laugh

 May 9, 2019
edited by heureka  May 9, 2019
 #3
avatar+22180 
+1

What is unit digit of 7^2018

 

\(\begin{array}{|rcll|} \hline && \mathbf{{\color{red}7}^{2018} \pmod{10}}\\ &&&\boxed{{\color{red}7^2} \pmod{10} \\ \equiv 49 \pmod{10}\\ \equiv 9 \pmod{10} \\ \equiv 9-10 \pmod{10}\\ \equiv {\color{green}-1} \pmod{10}} \\ &\equiv& \left({\color{green}-1}\right)^{1009} \pmod{10} \\ &\equiv& -1 \pmod{10} \\ &\equiv& -1+10 \pmod{10} \\ &\equiv& \mathbf{9 \pmod{10}} \\ \hline \end{array} \)

 

The unit digit of \(\mathbf{7^{2018}}\) is 9

 

laugh

 May 9, 2019

7 Online Users