We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
566
3
avatar+502 

A car travelling at 90 km/h is 500 m behind another car travelling at 70 km/h in the same direction. How long will it take the first car to catch the second?

 Jan 26, 2017

Best Answer 

 #1
avatar+21978 
+65

A car travelling at 90 km/h is 500 m behind another car travelling at 70 km/h in the same direction.

How long will it take the first car to catch the second?

 

\(\begin{array}{cll} \text{Let } v_1 &=& 90\ \frac{km}{h} \\ \text{Let } v_2 &=& 70\ \frac{km}{h} \\ \text{Let } d = 500\ m &=& 0.5\ km \\ \text{Let } t &=& time \\ \end{array}\)

 

if d is the distance:

\(\begin{array}{|rcll|} \hline d_{\text{car}_1} &=& v_1\cdot t - 0.5 \\ d_{\text{car}_2} &=& v_2\cdot t \\ \hline \end{array}\)

 

The first car catch the second if \(d_{\text{car}_1} = d_{\text{car}_2}\)

\(\begin{array}{|rcll|} \hline d_{\text{car}_1} &=& d_{\text{car}_2} \\ v_1\cdot t -0.5\ km &=& v_2\cdot t \quad & | \quad -v_2\cdot t +0.5 \\ v_1\cdot t - v_2\cdot t &=& 0.5\ km \\ t\cdot ( v_1 - v_2 ) &=& 0.5\ km \quad & | \quad :( v_1 - v_2 ) \\ t &=& \frac {0.5\ km} { v_1 - v_2 } \quad & | \quad v_1 = 90\ \frac{km}{h} \qquad v_2 = 70\ \frac{km}{h} \\ t &=& \frac {0.5\ km} { 90\ \frac{km}{h} - 70\ \frac{km}{h} } \\ t &=& \frac {0.5\ km} { 20\ \frac{km}{h} } \\ t &=& \frac {0.5} { 20 }\ h \\ t &=& 0.025\ h \quad & | \quad 1\ h = 60\min.\\ t &=& 0.025\cdot 60\min.\\ \mathbf{t} & \mathbf{=} & \mathbf{1.5\min.} \\ \hline \end{array}\)

 

laugh

 Jan 26, 2017
edited by heureka  Jan 26, 2017
edited by heureka  Jan 26, 2017
 #1
avatar+21978 
+65
Best Answer

A car travelling at 90 km/h is 500 m behind another car travelling at 70 km/h in the same direction.

How long will it take the first car to catch the second?

 

\(\begin{array}{cll} \text{Let } v_1 &=& 90\ \frac{km}{h} \\ \text{Let } v_2 &=& 70\ \frac{km}{h} \\ \text{Let } d = 500\ m &=& 0.5\ km \\ \text{Let } t &=& time \\ \end{array}\)

 

if d is the distance:

\(\begin{array}{|rcll|} \hline d_{\text{car}_1} &=& v_1\cdot t - 0.5 \\ d_{\text{car}_2} &=& v_2\cdot t \\ \hline \end{array}\)

 

The first car catch the second if \(d_{\text{car}_1} = d_{\text{car}_2}\)

\(\begin{array}{|rcll|} \hline d_{\text{car}_1} &=& d_{\text{car}_2} \\ v_1\cdot t -0.5\ km &=& v_2\cdot t \quad & | \quad -v_2\cdot t +0.5 \\ v_1\cdot t - v_2\cdot t &=& 0.5\ km \\ t\cdot ( v_1 - v_2 ) &=& 0.5\ km \quad & | \quad :( v_1 - v_2 ) \\ t &=& \frac {0.5\ km} { v_1 - v_2 } \quad & | \quad v_1 = 90\ \frac{km}{h} \qquad v_2 = 70\ \frac{km}{h} \\ t &=& \frac {0.5\ km} { 90\ \frac{km}{h} - 70\ \frac{km}{h} } \\ t &=& \frac {0.5\ km} { 20\ \frac{km}{h} } \\ t &=& \frac {0.5} { 20 }\ h \\ t &=& 0.025\ h \quad & | \quad 1\ h = 60\min.\\ t &=& 0.025\cdot 60\min.\\ \mathbf{t} & \mathbf{=} & \mathbf{1.5\min.} \\ \hline \end{array}\)

 

laugh

heureka Jan 26, 2017
edited by heureka  Jan 26, 2017
edited by heureka  Jan 26, 2017
 #2
avatar
+10

1.5 min

 Jan 26, 2017
 #3
avatar+18033 
+10

Rate  times time = distance       the distance is 500m (.5 km)

and the rate is the net speed difference (90-70) = 20 kmh

20 x t = .5 km

t = .5/20 = .025 hr = 1.5 minutes

 Jan 26, 2017

22 Online Users

avatar
avatar
avatar
avatar