+0  
 
-1
1205
0
avatar+870 

Let f be the function defined on [0,1] by \(f:x \mapsto \sqrt{x}-x\)

Determinate the maximum of function f, and justify rigorously your answer.

Ye'll have to follow the reduction to the canonical form of a quadratic polynomial.

 

HINT:

\(\forall x \in [0,1], \\\sqrt{x} \geq x\)

 

Different forms of a quadratic polynomial:

Expanded form: ax²+bx+(a,b,c being real numbers)

Canonical form: a(x-α)²+β 

\(\alpha = \frac{-b}{2a} \\\beta = \frac{-\Delta}{4a} \\\Delta=b^2-4ac\)

Factored form: a(x-x1)(x-x2) if  discriminant Δ>0

                        a(x-x0)² if Δ=0

The factored form exists only for positive discriminants.

 

If a>0 then α is the minimum of the function

If a<0 then α is the maximum of the function

 
 Dec 12, 2015

2 Online Users