+0  
 
+1
759
0
avatar+65 

I'm bored so I'm sharing what I believe is a neat proof for something useful. What you need to know to understand this is derivatives, compositions, and a bit of algebra (I think).

Let \(g(x) \) be the functional inverse of \(f(x)\).

Using knowledge about functional compositions, I can determine that \(f(g(x))=x\).

Taking the derivative of both sides...

\(\frac{d}{dx}(x)=\frac{d}{dx}(f(g(x)))\)

Solving the derivatives...

\(1=f'(g(x))g'(x)\)

Dividing both sides by \(f'(g(x))\)...

\({f'(g(x))}^{-1}=g'(x)\)

\({f'(g(x))}^{-1}=g'(x)\) is a simple method that allows an indirect derivation of an inverse function.

Example problem:

\(f(x)={2}^{{x}^{2}}\)

\(f'(x)={2}^{{x}^{2}+1}x*ln(2)\)

\(g(x)=\sqrt{log_2(x)}\)

\(\frac{1}{{2}^{{\sqrt{log_2(x)}}^{2}+1}\sqrt{log_2(x)}*ln(2)}=\frac{1}{2*{2}^{log_2(x)}\sqrt{log_2(x)}*ln(2)}=\frac{1}{2x*ln(2)\sqrt{log_2(x)}}=\frac{1}{2x\sqrt{ln(2)*ln(x)}}\)

Now checking the actual derivative of the function I get \(g'(x)=\frac{1}{2x\sqrt{ln(2)*ln(x)}}\)

I'll upload more proofs when I'm bored again.

 
 Feb 21, 2019
edited by creepercraft97T3  Feb 21, 2019
edited by creepercraft97T3  Feb 21, 2019

2 Online Users