We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# ​ Method of difference

0
167
1
+838

Thank you

Dec 13, 2018

### 1+0 Answers

#1
+22181
+11

Method of difference

Formula:

$$\begin{array}{|rcll|} \hline \displaystyle \sum \limits_{r=1}^{n}r^2 &=& \dfrac16n(n+1)(2n+1) \\\\ \displaystyle \sum \limits_{r=1}^{2n}r^3 &=& \dfrac1{2^2} (2n)^2(1+2n)^2 =n^2(1+2n)^2 \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline &&\mathbf{ \displaystyle \sum \limits_{r=1}^{n}(6r-3)^2 } \\\\ &=& \displaystyle \sum \limits_{r=1}^{n}(36r^2-36r+9) \\\\ &=& \displaystyle 36\sum \limits_{r=1}^{n}r^2- 36 \sum \limits_{r=1}^{n}r+ 9\sum \limits_{r=1}^{n}1 \\\\ &=& 36\dfrac16n(n+1)(2n+1) -36\dfrac{(n+1)}{2}n +9n \\\\ &=& 6n(n+1)(2n+1) -18n(n+1) +9n \\\\ &=& 6n(n+1)(2n+1) -18n^2-18n+9n \\\\ &=& 6n(n+1)(2n+1) -18n^2-9n \\\\ &=& 3n\Big( 2(n+1)(2n+1) -6n-3 \Big) \\\\ &=& 3n\Big( 2(n+1)(2n+1) -3(2n+1) \Big) \\\\ &=& 3n(2n+1)\Big( 2(n+1) -3 \Big) \\\\ &=& 3n(2n+1)(2n-1) \\\\ &\mathbf{=}& \mathbf{3n(4n^2-1)} \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline && \mathbf{\displaystyle \sum \limits_{r=1}^{2n}r^3 - \sum \limits_{r=1}^{n}(6r-3)^2 } \\\\ &=& n^2(1+2n)^2 - 3n(4n^2-1) \\ &=& n^2(1+2n)^2 - 3n(2n-1)(2n+1) \\ &=& n(1+2n)\Big(n(1+2n) - 3(2n-1)\Big) \\ &=& n(1+2n)(n+2n^2 - 6n +3 ) \\ &=& n(1+2n)(2n^2 -5n +3 ) \\ &\mathbf{=}& \mathbf{ n(1+2n)(2n-3)(n-1) } \\ \hline \end{array}$$

Dec 13, 2018