We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
167
1
avatar+838 

Thank you

 Dec 13, 2018
 #1
avatar+22181 
+11

Method of difference

Formula:

\(\begin{array}{|rcll|} \hline \displaystyle \sum \limits_{r=1}^{n}r^2 &=& \dfrac16n(n+1)(2n+1) \\\\ \displaystyle \sum \limits_{r=1}^{2n}r^3 &=& \dfrac1{2^2} (2n)^2(1+2n)^2 =n^2(1+2n)^2 \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline &&\mathbf{ \displaystyle \sum \limits_{r=1}^{n}(6r-3)^2 } \\\\ &=& \displaystyle \sum \limits_{r=1}^{n}(36r^2-36r+9) \\\\ &=& \displaystyle 36\sum \limits_{r=1}^{n}r^2- 36 \sum \limits_{r=1}^{n}r+ 9\sum \limits_{r=1}^{n}1 \\\\ &=& 36\dfrac16n(n+1)(2n+1) -36\dfrac{(n+1)}{2}n +9n \\\\ &=& 6n(n+1)(2n+1) -18n(n+1) +9n \\\\ &=& 6n(n+1)(2n+1) -18n^2-18n+9n \\\\ &=& 6n(n+1)(2n+1) -18n^2-9n \\\\ &=& 3n\Big( 2(n+1)(2n+1) -6n-3 \Big) \\\\ &=& 3n\Big( 2(n+1)(2n+1) -3(2n+1) \Big) \\\\ &=& 3n(2n+1)\Big( 2(n+1) -3 \Big) \\\\ &=& 3n(2n+1)(2n-1) \\\\ &\mathbf{=}& \mathbf{3n(4n^2-1)} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \mathbf{\displaystyle \sum \limits_{r=1}^{2n}r^3 - \sum \limits_{r=1}^{n}(6r-3)^2 } \\\\ &=& n^2(1+2n)^2 - 3n(4n^2-1) \\ &=& n^2(1+2n)^2 - 3n(2n-1)(2n+1) \\ &=& n(1+2n)\Big(n(1+2n) - 3(2n-1)\Big) \\ &=& n(1+2n)(n+2n^2 - 6n +3 ) \\ &=& n(1+2n)(2n^2 -5n +3 ) \\ &\mathbf{=}& \mathbf{ n(1+2n)(2n-3)(n-1) } \\ \hline \end{array}\)

 

laugh

 Dec 13, 2018

20 Online Users