Method of difference
Formula:
n∑r=1r2=16n(n+1)(2n+1)2n∑r=1r3=122(2n)2(1+2n)2=n2(1+2n)2
n∑r=1(6r−3)2=n∑r=1(36r2−36r+9)=36n∑r=1r2−36n∑r=1r+9n∑r=11=3616n(n+1)(2n+1)−36(n+1)2n+9n=6n(n+1)(2n+1)−18n(n+1)+9n=6n(n+1)(2n+1)−18n2−18n+9n=6n(n+1)(2n+1)−18n2−9n=3n(2(n+1)(2n+1)−6n−3)=3n(2(n+1)(2n+1)−3(2n+1))=3n(2n+1)(2(n+1)−3)=3n(2n+1)(2n−1)=3n(4n2−1)
2n∑r=1r3−n∑r=1(6r−3)2=n2(1+2n)2−3n(4n2−1)=n2(1+2n)2−3n(2n−1)(2n+1)=n(1+2n)(n(1+2n)−3(2n−1))=n(1+2n)(n+2n2−6n+3)=n(1+2n)(2n2−5n+3)=n(1+2n)(2n−3)(n−1)