Meyer rolls two fair, ordinary dice with the numbers 1,2,3,4,5,6 on their sides. What is the probability that neither of the dice shows a square number?
These are all the possible rolls:
11 , 12 , 13 , 14 , 15 , 16 , 21 , 22 , 23 , 24 , 25 , 26 , 31 , 32 , 33 , 34 , 35 , 36 , 41 , 42 , 43 , 44 , 45 , 46 , 51 , 52 , 53 , 54 , 55 , 56 , 61 , 62 , 63 , 64 , 65 , 66 , Total = 36
Just count the ones that have neither 1 nor 4 in them. I count 16 such numbers. Check my count.
So, the probability is: 16 / 36 = 4 / 9