Find the minimum value of 9^x - 2 \cdot 3^x + 1 over all real numbers x.
\( 9^x - 2 \cdot 3^x + 1 \)
Take the derivative and set to 0
9^x ( ln 9) - 2 * 3^x (ln 3) = 0
9^x (ln 9) - ( 3^x) ( 2ln3) = 0
9^x * (ln 9) - (ln 3^2) * 3^x = 0
(ln 9) ( 9^x - 3^x) = 0
9^x - 3^x = 0
9^x = 3^x
(3^2)^(x) = 3^(x) take the log of both sides
log (3)^(2x) = log(3)^x
(2x) log 3 = x log 3
(log 3) (2x - x) = 0
2x - x = 0
x = 0
The min is
9^(0) - 2* 3^(0) + 1 =
1 - 2 + 1 = 0