Guest Sep 4, 2017

1+0 Answers


Hello! That's quite an interesting expression you got there of \((a-7)^2-2(a-7)(a+7)+a+7\). Let's simplify it the we can.


\((a-7)^2-2(a-7)(a+7)+a+7\) First, let's deal with \((a-7)^2\) by knowing the expansion of a binomial squared. In general, it is \((x-y)^2=x^2-2xy+y^2\).
\(a^2-14a+49-2(a-7)(a+7)+a+7\) Now, let's expand \((a-7)(a+7)\) by using the following rule again of \((x+y)(x-y)=x^2-y^2\).
\(-2(a-7)(a+7)=-2(a^2-49)\) Distribute the -2 to both terms in the parentheses.
\(a^2-14a+49-2a^2+98+a+7\) Let's rearrange the equation such that all the terms with the same degree are adjacent.
\(-2a^2+a^2-14a+a+98+49+7\) Now, simplify.


Therefore, \((a-7)^2-2(a-7)(a+7)+a+7=-a^2-13a+154\).

TheXSquaredFactor  Sep 4, 2017

16 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details