+0  
 
+1
99
1
avatar+40 

What is the unique three-digit positive integer \(x\) satisfying \(100x\equiv1\pmod{997}\)?

 Jun 3, 2020
 #1
avatar
+1

100x mod 997 =1, solve for x
x =997c + 668, where c=0, 1 ,2 ,3......etc.
The smallest x = 668

 Jun 3, 2020

16 Online Users

avatar