+0

# Modular Arithmetic Help!!!

+1
741
5

(a) How many positive integers $$N$$  from 1 to 5000 satisfy the congruence $$N\equiv5\pmod{12}$$ ?

(b) How many positive integers $$N$$  from 1 to 5000 satisfy the congruence $$N\equiv11\pmod{13}$$ ?

Sep 14, 2017
edited by Jeff123  Sep 14, 2017

#1
+5

Modular Arithmetic

(a) How many positive integers   from 1 to 5000 satisfy the congruence  $$N\equiv5\pmod{12}$$?

$$\begin{array}{|lrcll|} \hline N\equiv5\pmod{12} & \text { or } & N-5 &=& n\cdot 12 \\ & & N &=& n\cdot 12 + 5 \quad & | \quad N_{max} = 5000 \\ & & 5000 &=& n\cdot 12 + 5 \\ & & n &=& \frac{5000-5}{12} \\ & & n &=& .25 \\\\ \mathbf{n=416} &\Rightarrow& N &=& 416\cdot 12 + 5 = 4997 \\ \hline \end{array}$$

416  + 1(n=0)  = 417 positive integers from 1 to 5000 satisfy the congruence $$N\equiv5\pmod{12}$$

(b) How many positive integers   from 1 to 5000 satisfy the congruence $$N\equiv11\pmod{13}$$ ?

$$\begin{array}{|lrcll|} \hline N\equiv11\pmod{13} & \text { or } & N-11 &=& n\cdot 13 \\ & & N &=& n\cdot 13 + 11 \quad & | \quad N_{max} = 5000 \\ & & 5000 &=& n\cdot 13 + 11 \\ & & n &=& \frac{5000-11}{13} \\ & & n &=& .769230769 \\\\ \mathbf{n=383} &\Rightarrow & N &=& 383\cdot 13 + 11 = 4990 \\ \hline \end{array}$$

383 + 1(n=0) = 384 positive integers from 1 to 5000 satisfy the congruence $$N\equiv11\pmod{13}$$ Sep 14, 2017
edited by heureka  Sep 15, 2017
#2
+1

The answer is wrong, I tried those answers before too. IDK why it won't work...

Sep 14, 2017
#3
+2

Both answers above forget to include n = 0.

Answers should be 417 and 384 resp.

Sep 15, 2017
#4
+4

Thank you!  heureka  Sep 15, 2017
#5
+1

Thank you so much!!!!!!

Sep 16, 2017