+0  
 
+1
383
5
avatar+109 

(a) How many positive integers \(N\)  from 1 to 5000 satisfy the congruence \(N\equiv5\pmod{12}\) ?

 

(b) How many positive integers \(N\)  from 1 to 5000 satisfy the congruence \(N\equiv11\pmod{13}\) ?

Jeff123  Sep 14, 2017
edited by Jeff123  Sep 14, 2017
 #1
avatar+19618 
+5

Modular Arithmetic

 

(a) How many positive integers   from 1 to 5000 satisfy the congruence  \(N\equiv5\pmod{12} \)?

\(\begin{array}{|lrcll|} \hline N\equiv5\pmod{12} & \text { or } & N-5 &=& n\cdot 12 \\ & & N &=& n\cdot 12 + 5 \quad & | \quad N_{max} = 5000 \\ & & 5000 &=& n\cdot 12 + 5 \\ & & n &=& \frac{5000-5}{12} \\ & & n &=& [416].25 \\\\ \mathbf{n=416} &\Rightarrow& N &=& 416\cdot 12 + 5 = 4997 \\ \hline \end{array}\)

 

416  + 1(n=0)  = 417 positive integers from 1 to 5000 satisfy the congruence \(N\equiv5\pmod{12}\)

 

 

(b) How many positive integers   from 1 to 5000 satisfy the congruence \( N\equiv11\pmod{13}\) ?

\(\begin{array}{|lrcll|} \hline N\equiv11\pmod{13} & \text { or } & N-11 &=& n\cdot 13 \\ & & N &=& n\cdot 13 + 11 \quad & | \quad N_{max} = 5000 \\ & & 5000 &=& n\cdot 13 + 11 \\ & & n &=& \frac{5000-11}{13} \\ & & n &=& [383].769230769 \\\\ \mathbf{n=383} &\Rightarrow & N &=& 383\cdot 13 + 11 = 4990 \\ \hline \end{array}\)

 

383 + 1(n=0) = 384 positive integers from 1 to 5000 satisfy the congruence \(N\equiv11\pmod{13}\)

 

laugh

heureka  Sep 14, 2017
edited by heureka  Sep 15, 2017
 #2
avatar+109 
+1

The answer is wrong, I tried those answers before too. IDK why it won't work...

Jeff123  Sep 14, 2017
 #3
avatar
+2

Both answers above forget to include n = 0.

Answers should be 417 and 384 resp.

Guest Sep 15, 2017
 #4
avatar+19618 
+4

Thank you!

 

blushlaugh

heureka  Sep 15, 2017
 #5
avatar+109 
+1

Thank you so much!!!!!!

Jeff123  Sep 16, 2017

8 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.