+0  
 
0
113
1
avatar+231 

How do you work out what y and z are if x=y (mod z), where 7x+1=0 mod 3, x=0 mod 2, without guessing and checking, and finding the LCM?

 Aug 4, 2020
 #1
avatar+25589 
+2

How do you work out what y and z are if x=y (mod z), where 7x+1=0 mod 3, x=0 mod 2,
without guessing and checking, and finding the LCM?

 

\(\begin{array}{|lrcll|} \hline & 7x+1 &\equiv& 0 \pmod{ 3 } & \text{or} \\ & 7x+1 &=& 0 + 3n,\ n\in \mathbb{Z} \\ & 7x+1 &=& 3n \\ (1) & \mathbf{7x} &=& \mathbf{3n-1} \\ \hline & x &\equiv& 0 \pmod{ 2 } & \text{or}\\ & x &=& 0 + 2m,\ m\in \mathbb{Z} \\ & x &=& 2m \quad | \quad *7 \\ (2) & \mathbf{7x} &=& \mathbf{14m} \\ \hline & \mathbf{7x} = 3n-1 &=& 14m \\ & 3n-1 &=& 14m \\ (3) & \mathbf{3n-14m} &=& \mathbf{1} \\ \hline \end{array} \)

 

The Euler Method: Source see: https://www.math.nyu.edu/faculty/hausner/euler.pdf

 

\(\mathbf{3n-14m=1}\qquad\) Take this equation modulo 3 ( the smallest coefficient ).

\(\begin{array}{|rcll|} \hline \mathbf{3n-14m} &=& \mathbf{1} \\ && \text{Take this equation modulo $3$ ( the smallest coefficient )}. \\ \text{This yields} \\ 3n &=& 14m+1 \\ n &=& \dfrac{14m+1}{3} \\ n &=& \dfrac{15m-m+1}{3} \\ n &=& 5m+\dfrac{1-m}{3} \\ \text{We get } \mathbf{n} &=& \mathbf{5m+a},\ \text{where $\mathbf{a}$ is a new variable } \\ \hline a &=& \dfrac{1-m}{3} \\ 3a &=& 1-m \\ \mathbf{m} &=& \mathbf{1-3a} \qquad \text{( we have finished, no fraction there )}\\ \hline \text{Now go back to the} \\ \text{"x" equation (2) to get } \mathbf{x}&=&\mathbf{2m}. \\ x &=& 2(1-3a) \\ x &=& 2-6a \qquad \text{or} \\ \mathbf{x} &\equiv& \mathbf{2 \pmod{6}}\quad | \quad (x=y \pmod{z}) \\ \hline y=2,\ z=6 \\ \hline \end{array}\)

 

 

 

laugh

 Aug 5, 2020
edited by heureka  Aug 5, 2020
edited by heureka  Aug 5, 2020
edited by heureka  Aug 5, 2020

42 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar