+0  
 
0
684
2
avatar

Find the remainder when 24^50 - 15^50 is divided by 13.

 

I know that we'd have to simplify 24^50 and 15^50, but it's hard to do. Can anyone help me?

 May 6, 2020
 #1
avatar
0

Sorry, I don't know how to reduce it, but:

 

[24^50  -  15^50] mod 13 = 0

 May 6, 2020
 #2
avatar+26387 
+1

Find the remainder when \(24^{50} - 15^{50}\) is divided by \(13\).

 

\(\begin{array}{|rcll|} \hline && \mathbf{24^{50} - 15^{50} \pmod{13}} \quad | \quad 24 \equiv -2 \pmod{13},\ 15 \equiv 2 \pmod{13} \\ &\equiv& (-2)^{50} - 2^{50} \pmod{13} \\ &\equiv& 2^{50} - 2^{50} \pmod{13} \\ &\equiv& \mathbf{0 \pmod{13}} \\ \hline \end{array}\)

 

laugh

 May 7, 2020

3 Online Users

avatar