+0  
 
0
120
2
avatar

What is the smallest positive integer n such that 3n = 1356 (mod 27).

 Jan 26, 2022
 #1
avatar
0

This is equivalent to n=452 mod 27 so the answer is 452

 Jan 27, 2022
 #2
avatar+117849 
+1

What is the smallest positive integer n such that 3n = 1356 (mod 27).

 

\(3n=27k+1356\\ 3n=3*9k+3*452\\ n=9k+452\\~\\ 9k+452>0\\ 9k>-452\\ k>-50.2\\~\\ when\;k=-50\\ n=9*-50+452\\ n=2 \)

 

the smallest value of n is 2

check

3*2=6 (mod 27)

1356 = 50+6/27 = 6 mod(27)

 

 

 

 

LaTex:

3n=27k+1356\\
3n=3*9k+3*452\\
n=9k+452\\~\\
9k+452>0\\
9k>-452\\
k>-50.2\\~\\
when\;k=-50\\
n=9*-50+452\\
n=2

 Jan 27, 2022

36 Online Users

avatar