What is the smallest positive integer n such that 3n = 1356 (mod 27).
3n=27k+13563n=3∗9k+3∗452n=9k+452 9k+452>09k>−452k>−50.2 whenk=−50n=9∗−50+452n=2
the smallest value of n is 2
check
3*2=6 (mod 27)
1356 = 50+6/27 = 6 mod(27)
LaTex:
3n=27k+1356\\
3n=3*9k+3*452\\
n=9k+452\\~\\
9k+452>0\\
9k>-452\\
k>-50.2\\~\\
when\;k=-50\\
n=9*-50+452\\
n=2