Notice that \(31\cdot37=1147.\) Find some integer \(n\) with \(0\leq n<2293\) such that \(31n\equiv 3\pmod{2293}.\)
31n mod 2293 = 3
n=1; a=31*n % 2293; if(a==3, goto3, goto4);printa,n; n++;if(n<1000, goto1,0)
n = 2293 m + 222 , where m =0, 1, 2, 3.......etc.
So, the smallest n = 222.