We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
155
1
avatar+335 

For how many integers a satisfying \(1 \le a \le 23\) is it true that \(a^{-1} \equiv a \pmod{24}\)?

 Jan 10, 2019

Best Answer 

 #1
avatar+5225 
+3

\(a^{-1}\equiv a \pmod{24} \Longleftrightarrow a^2 \equiv 1 \pmod{24}\\ a^2-1 = 24k,~k \in \mathbb{Z}\)

 

\(|\{1,5,7,11,13,17,19,23\}|=8\)

 

\(\text{We notice that these are primes such that }p^2 > 24\\ \text{There must be an algebraic reason for this and I'll see if I can dig it up}\)

.
 Jan 10, 2019
 #1
avatar+5225 
+3
Best Answer

\(a^{-1}\equiv a \pmod{24} \Longleftrightarrow a^2 \equiv 1 \pmod{24}\\ a^2-1 = 24k,~k \in \mathbb{Z}\)

 

\(|\{1,5,7,11,13,17,19,23\}|=8\)

 

\(\text{We notice that these are primes such that }p^2 > 24\\ \text{There must be an algebraic reason for this and I'll see if I can dig it up}\)

Rom Jan 10, 2019

16 Online Users