+0  
 
0
51
3
avatar

When working modulo m, the notation a^-1 is used to denote the residue b for which \(ab\equiv 1\pmod{m}\), if any exists. For how many integers a satisfying 0 < a < 100 is it true that \(a(a-1)^{-1} \equiv 4a^{-1} \pmod{20}\)?

Please hurry up guys!!

Guest Aug 28, 2018
edited by Guest  Aug 28, 2018

Best Answer 

 #1
avatar+19992 
+2

When working modulo m, the notation \(a^{-1}\) is used to denote the residue \(b\) for which \(ab\equiv 1\pmod{m}\),
if any exists.
For how many integers a satisfying \(0 < a < 100\) is it true that \(a(a-1)^{-1} \equiv 4a^{-1} \pmod{20}\) ?

 

\(\begin{array}{|rcll|} \hline a(a-1)^{-1} &\equiv& 4a^{-1} \pmod{20} \quad & | \quad \cdot a \\ a^2(a-1)^{-1} &\equiv& 4a^{-1}\cdot a \pmod{20} \quad & | \quad a^{-1}\cdot a = \dfrac{a}{a} = 1 \\ a^2(a-1)^{-1} &\equiv& 4 \pmod{20} \quad & | \quad a^2(a-1)^{-1} = \dfrac{a^2}{a-1} = a+1 + \dfrac{1}{a-1} \\ a+1 + \underbrace{\dfrac{1}{a-1}}_{\text{is integer, only if }a=2} &\equiv& 4 \pmod{20} \quad & | \quad a = 2 \\\\ 2+1 + \dfrac{1}{2-1} &\equiv& 4 \pmod{20} \quad & | \quad \\ 3 + 1 &\equiv& 4 \pmod{20} \\ 4 &\equiv& 4 \pmod{20} \ \checkmark \\ \hline \end{array}\)

 

One Integer solution \(\mathbf{a=2}\)

 

laugh

heureka  Aug 29, 2018
 #1
avatar+19992 
+2
Best Answer

When working modulo m, the notation \(a^{-1}\) is used to denote the residue \(b\) for which \(ab\equiv 1\pmod{m}\),
if any exists.
For how many integers a satisfying \(0 < a < 100\) is it true that \(a(a-1)^{-1} \equiv 4a^{-1} \pmod{20}\) ?

 

\(\begin{array}{|rcll|} \hline a(a-1)^{-1} &\equiv& 4a^{-1} \pmod{20} \quad & | \quad \cdot a \\ a^2(a-1)^{-1} &\equiv& 4a^{-1}\cdot a \pmod{20} \quad & | \quad a^{-1}\cdot a = \dfrac{a}{a} = 1 \\ a^2(a-1)^{-1} &\equiv& 4 \pmod{20} \quad & | \quad a^2(a-1)^{-1} = \dfrac{a^2}{a-1} = a+1 + \dfrac{1}{a-1} \\ a+1 + \underbrace{\dfrac{1}{a-1}}_{\text{is integer, only if }a=2} &\equiv& 4 \pmod{20} \quad & | \quad a = 2 \\\\ 2+1 + \dfrac{1}{2-1} &\equiv& 4 \pmod{20} \quad & | \quad \\ 3 + 1 &\equiv& 4 \pmod{20} \\ 4 &\equiv& 4 \pmod{20} \ \checkmark \\ \hline \end{array}\)

 

One Integer solution \(\mathbf{a=2}\)

 

laugh

heureka  Aug 29, 2018
 #2
avatar
+1

Er... I don't think that it is...

For one, it says integers

Second, my friend has seen this before and he says it's not 1

Guest Aug 29, 2018
 #3
avatar+1163 
+1

Solving it this way gives:

 

\(a(a-1)^{-1} \equiv 4a^{-1} \pmod{20}\\ a \equiv 4a^{-1}(a-1) \pmod{20}\\ a^2 \equiv 4(a-1) \pmod{20}\\ a^2-4a+4 \equiv 0 \pmod{20}\\ (a-2)^2 \equiv 0 \pmod{20} \\ \text { }\\ a= 2+10n \;|\text { for n = (0, 1, 2, … 9), so 10 integers  satisfy 0 < a < 100}\)

 

Well blimey! You’re right. (I’m surprised because Heureka can do mod problems while napping.)

 

GA

GingerAle  Aug 30, 2018

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.