What is the smallest positive integer \(n\) such that \(531n \equiv 1067n \pmod{24}?\)
\(531n \equiv 1067n \pmod{24}\\ 24*22n+3n \equiv 24*44n+11n \pmod{24}\\ 0+3n \equiv 0+11n \pmod{24}\\ 3n \equiv 11n \pmod{24}\\ 8n \equiv 0 \pmod{24}\\ n=0,3,6,9,etc\\ \text{The smallest positive n is 3}\)
Thank you Melody! It really helped :)