+0  
 
0
943
9
avatar+9589 

1. Difficulty: Easy

 

Prove that \(\tan(\arccos \theta)=\cot(\arcsin \theta)\)

 

2. Difficulty: Normal(Not hard not easy)

 

Solve \(\ln(1+x) = \ln 2 + \dfrac{\ln x}{2}\)

Tips: x does not exist in the form of a real number.

 Jan 23, 2017
edited by MaxWong  Jan 23, 2017

Best Answer 

 #1
avatar+26367 
+70

1. Prove that 

\(\tan{(~\arccos{(x)}~)}=\cot{(~\arcsin{(x)}~)}\)

 

i)

\(\begin{array}{lrcll} & \cos{(\varphi)} &=& x \\ \text{or}& \quad \varphi &=& \arccos{(x)}\\ \end{array}\)

 

ii)

\(\begin{array}{lrcll} &\sin{(90^\circ-\varphi)} &=& \cos{(\varphi)} = x \\ \text{or}& \quad 90^\circ-\varphi &=& \arcsin{(x)}\\ \end{array}\)

 

iii)

\(\begin{array}{rcll} \cot{(90^\circ-\varphi)} &=& \tan{(\varphi)} \\ \cot{(\arcsin{(x)})} &=& \tan{(\arccos{(x)})} \\ \end{array} \)

 

laugh

 Jan 23, 2017
 #1
avatar+26367 
+70
Best Answer

1. Prove that 

\(\tan{(~\arccos{(x)}~)}=\cot{(~\arcsin{(x)}~)}\)

 

i)

\(\begin{array}{lrcll} & \cos{(\varphi)} &=& x \\ \text{or}& \quad \varphi &=& \arccos{(x)}\\ \end{array}\)

 

ii)

\(\begin{array}{lrcll} &\sin{(90^\circ-\varphi)} &=& \cos{(\varphi)} = x \\ \text{or}& \quad 90^\circ-\varphi &=& \arcsin{(x)}\\ \end{array}\)

 

iii)

\(\begin{array}{rcll} \cot{(90^\circ-\varphi)} &=& \tan{(\varphi)} \\ \cot{(\arcsin{(x)})} &=& \tan{(\arccos{(x)})} \\ \end{array} \)

 

laugh

heureka Jan 23, 2017
 #2
avatar+9589 
0

Good proof.

 

My proof:

\(\text{Let the angle(arccos theta) be }\phi\\ \tan(\arccos\theta) \\ = \tan \phi\\ = \dfrac{\sqrt{1-\theta^2}}{\theta}\\ \text{Let arcsin theta be }\phi_1\\ \cot(\arcsin\theta)\\ =\dfrac{1}{\tan\phi_1}\\ =\tan(90^{\circ}-\phi_1)\\ =\tan \phi\\ =\tan(\arccos\theta)\)

MaxWong  Jan 23, 2017
 #3
avatar
0

2)

 

Solve for x over the real numbers:
log(x + 1) = log(2) + (log(x))/2

Subtract log(2) + (log(x))/2 from both sides:
-log(2) - (log(x))/2 + log(x + 1) = 0

Bring -log(2) - (log(x))/2 + log(x + 1) together using the common denominator 2:
1/2 (-2 log(2) - log(x) + 2 log(x + 1)) = 0

Multiply both sides by 2:
-2 log(2) - log(x) + 2 log(x + 1) = 0

-2 log(2) - log(x) + 2 log(x + 1) = log(1/4) + log(1/x) + log((x + 1)^2) = log((x + 1)^2/(4 x)):
log((x + 1)^2/(4 x)) = 0

Cancel logarithms by taking exp of both sides:
(x + 1)^2/(4 x) = 1

Multiply both sides by 4 x:
(x + 1)^2 = 4 x

Subtract 4 x from both sides:
(x + 1)^2 - 4 x = 0

Expand out terms of the left hand side:
x^2 - 2 x + 1 = 0

Write the left hand side as a square:
(x - 1)^2 = 0

Take the square root of both sides:
x - 1 = 0

Add 1 to both sides:
Answer: |x = 1

 Jan 23, 2017
 #5
avatar+9589 
0

One of the correct answers, if I did not mention that x is not a real number.

MaxWong  Jan 23, 2017
 #8
avatar+308 
0

so would x = i?

Obscure  Jan 23, 2017
 #9
avatar+9589 
0

Posted a while before you posted this comment......

 

x = i is correct.

MaxWong  Jan 24, 2017
 #4
avatar
+5

1)

 

Verify the following identity:
tan(cos^(-1)(θ)) = cot(sin^(-1)(θ))

Multiply numerator and denominator of sqrt(1 - θ^2)/θ by 1/sqrt(1 - θ^2):
1/(θ 1/sqrt(1 - θ^2)) = ^?(sqrt(1 - θ^2))/(θ)

1 = 1:
1/(θ 1/sqrt(1 - θ^2)) = ^?(sqrt(1 - θ^2))/(θ)

θ/sqrt(1 - θ^2) = θ/sqrt(1 - θ^2):
1/θ 1/sqrt(1 - θ^2) = ^?(sqrt(1 - θ^2))/(θ)

The left hand side and right hand side are identical:
Answer: |(identity has been verified)

 Jan 23, 2017
 #6
avatar+9589 
0

Good proof. 

 

My own proof is mentioned above.

MaxWong  Jan 23, 2017
 #7
avatar+9589 
0

I have to sleep, I will give the answer for 2..

 

You probably know that: \(\ln z =\ln|z| +i \arg(z) \)

 

If you try \(\ln i\):

 

\(\ln i\\ = \ln |i| + i \arg(i)\\ = \ln 1 + i \arctan \dfrac{1}{0}\\ =\ln 1 + i \dfrac{\pi}{2}\\ = \dfrac{i\pi}{2}\)

 

If you try \(\ln(1+i)\):

\(\ln(1+i)\\ =\ln|1+i| + i \arg(1+i)\\ =\ln 2 + i \arctan{1}\\ =\ln 2 + \dfrac{i\pi}{4}\\ = \ln 2 + \dfrac{\ln i}{2}\)

Therefore x = i satisfies the equation.

 Jan 23, 2017

1 Online Users