Find the ordered pair \((a, b)\) of real numbers for which
\((ax + b)(x^5 + 1) - (5x + 1)\)
is divisible by \(x^{2}+1.\)
Thanks so much! I will try to figure out any simpler ways, great job on your answer! I suspect that guest is the one who is falsely posting answers, as melody as stated on one of my other posts.
Find the ordered pair \((a, b)\) of real numbers for which
\((ax + b)(x^5 + 1) - (5x + 1)\)
is divisible by \(x^{2}+1\).
\(\begin{array}{|lrcll|} \hline & P(x) &=& Q(x) (x^{2}+1) \\ & \mathbf{(ax + b)(x^5 + 1) - (5x + 1)} &=& \mathbf{Q(x) (x^{2}+1)} \\ & && \boxed{x^2+1 = 0\\ x^2 = -1\\ x=\pm i } \\ \hline x=i: & (ai + b)(i^5 + 1) - (5i + 1) &=& Q(i)\times 0 \quad | \quad i^5 = i \\ & (ai + b)(i + 1) - (5i + 1) &=& 0 \\ & (ai + b)(i + 1) - 5x - 1 &=& 0 \\ & ai^2+i(a+b-5) +b-1 &=& 0 \quad | \quad i^2 = -1 \\ & -a+i(a+b-5) +b-1 &=& 0 \\ (1) & \mathbf{-a+b-1+i(a+b-5)} &=& \mathbf{0} \\ \hline x=-i: & \left(a(-i) + b\right)\left((-i)^5 + 1\right) - \left(5(-i) + 1\right) &=& Q(-i) \times 0 \quad | \quad (-i)^5= -i \\ & (-ai + b)(-i + 1) - (-5i + 1) &=& 0 \\ & (-ai + b)(-i + 1) 5i-1 &=& 0 \\ & ai^2-i(a+b-5) +b-1 &=& 0 \quad | \quad i^2 = -1 \\ & -a-i(a+b-5) +b-1 &=& 0 \\ (2) & \mathbf{-a+b-1-i(a+b-5)} &=& \mathbf{0} \\ \hline (1)+(2):& (-a+b-1)+i(a+b-5) \\ & + (-a+b-1)-i(a+b-5)&=& 0 \\ & 2(-a+b-1) &=& 0 \\ & -a+b-1 &=& 0 \\ &\mathbf{b} &=& \mathbf{1+a} \\ \hline (1)-(2):& (-a+b-1)+i(a+b-5) \\ &- \Big( (-a+b-1)-i(a+b-5) \Big) &=& 0 \\ & (-a+b-1)+i(a+b-5) \\ & -(-a+b-1)+i(a+b-5) &=& 0 \\ & 2i(a+b-5) &=& 0 \\ & a+b-5 &=& 0 \\ &\mathbf{b} &=& \mathbf{5-a} \\ \hline &b=1+a &=& 5-a \\ & 1+a &=& 5-a \\ & 2a &=& 4 \\ & \mathbf{a} &=& \mathbf{2} \\\\ & b&=&1+a \\ & b&=&1+2 \\ & \mathbf{b} &=& \mathbf{3} \\ \hline \end{array}\)