+0  
 
+1
310
3
avatar+314 

If x3 and x2 don't exist in the polynomial (x3+mx+n) (x2-3x+4);

What is the value of m, n?

ISmellGood  Aug 28, 2017
 #1
avatar+93356 
+3

If x3 and x2 don't exist in the polynomial (x3+mx+n) (x2-3x+4);

What is the value of m, n?

 

\((x^3+mx+n) (x^2-3x+4)\\ x^3\;\;terms: 4x^3+mx*x^2= 4x^3+mx^3= (4+m)x^3 \\ x^2\;\;terms: -mx*3x+nx^2=-3mx^2+nx^2=(-3m+n)x^2\\~\\ 4+m=0\\ m=-4\\ -3m+n=0\\ n=3m\\ n=3*-4\\ n=-12\\~\\ n=-12,\qquad m=-4 \)

Melody  Aug 28, 2017
edited by Melody  Aug 28, 2017
 #2
avatar+314 
+1

Amazing! Thanks!

ISmellGood  Aug 28, 2017
 #3
avatar+88898 
+1

 

 (x^3+mx+n) (x^2-3x+4)=

 

x^5 - 3x^4 + 4x^3

                 + mx^3 -3mx^2 + 4mx

                             + nx^2   - 3nx   + 4n

_______________________________

x^5  -  3x^4 + (4 + m)x^3 + (-3m + n)x^2 + (4m -3n)x + 4n

 

4 + m  = 0  →  m = -4

-3m+ n = 0 →  -3(-4) + n  = 0  →  12 + n = 0  →  n  = -12

 

Proof

(x^3 - 4x - 12) (x^2 - 3x + 4)  =

 

 x^5 - 3 x^4 + 20 x - 48      .....no x^3  or x^2  terms in the product polynomial...!!!

 

cool cool cool

CPhill  Aug 28, 2017

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.