+0  
 
+1
43
2
avatar

If I have a list of 5 numbers each of them following another [1,2,3,4,5] and I want to multiply all of them together. 

How do I write (1*2)+(1*3)+(1*4)+(1*5)+(2*3)+(2*4)+(2*5)+(3*4)+(3*5)+(4*5) But with 4000 numbers in the list instead of 5 without having to write every instance out? Is it possible to make a rule and calculate it in a common calculator? 

 Jan 25, 2019
 #1
avatar+21338 
+7

If I have a list of 5 numbers each of them following another [1,2,3,4,5] and I want to multiply all of them together. 

How do I write (1*2)+(1*3)+(1*4)+(1*5)+(2*3)+(2*4)+(2*5)+(3*4)+(3*5)+(4*5)

But with 4000 numbers in the list instead of 5 without having to write every instance out?

Is it possible to make a rule and calculate it in a common calculator? 

 

Table:

\(\begin{array}{|r|r|r|r|r|r} \hline \text{multiply} & 1 & 2 & 3 & 4 & 5 \\ \hline 1 & \color{red}1 & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} \\ \hline 2 & \color{grey}2 & \color{red}4 & \mathbf{6} & \mathbf{8} & \mathbf{10} \\ \hline 3 & \color{grey}3 & \color{grey}6 & \color{red}9 & \mathbf{12} & \mathbf{15} \\ \hline 4 & \color{grey}4 & \color{grey}8 & \color{grey}12 & \color{red}16 & \mathbf{20} \\ \hline 5 & \color{grey}5 & \color{grey}10 & \color{grey}15 & \color{grey}20 & \color{red}25 \\ \hline sum & \color{blue}15 & \color{blue}30 & \color{blue}45 & \color{blue}60 & \color{blue}75 & \color{blue}\text{arithmetical sequence} \\ \hline \end{array} \)

 

\(\text{Let the sum of all numbers in the table $\mathbf{S} = \color{blue}{15+30+45+60+75} = \color{blue}225 $} \\ \begin{array}{rcll} \text{Let the sum we are looking for } \mathbf{s=} \\ && (1*2)+(1*3)+(1*4)+(1*5)\\ && +(2*3)+(2*4)+(2*5) \\ && +(3*4)+(3*5) \\ && +(4*5) \\ &=& \mathbf{2+3+4+5} \\ && \mathbf{+6+8+10} \\ && \mathbf{+12+15} \\ && \mathbf{+20} \\ &=& 85\\ \end{array} \\ \begin{array}{rcll} \text{Let the sum of all square numbers in the diagonal of the table $\mathbf{q} =$} \color{red}{1+4+9+16+25}=\color{red}55 \\ \end{array} \)

 

So we see the formula: \(\boxed{S = 2s + q}\)  or \(\boxed{s = \dfrac{1}{2}\cdot (S-q) }\)

 

\(\mathbf{ S=\ ?}\)

\(\begin{array}{|rcll|} \hline a_n &=& a_1+(n-1)d \quad | \quad d=a_1 \\ &=& a_1+(n-1)a_1 \\ &=& a_1+ na_1-a_1 \\ &=& na_1 \quad | \quad a_1=(1+n) \dfrac{n}{2} \\ &=& (1+n) \dfrac{n^2}{2} \\\\ S &=& (a_1 + a_n)\cdot \dfrac{n}{2} \\ &=& \left((1+n) \dfrac{n}{2} +(1+n) \dfrac{n^2}{2} \right)\cdot \dfrac{n}{2} \\ &=& \Big((1+n) +(1+n) n \Big)\cdot \dfrac{n^2}{4} \\ &=& (n^2+2n+1 )\cdot \dfrac{n^2}{4} \\ &=& (n+1)^2\cdot \dfrac{n^2}{4} \\ \mathbf{S} & \mathbf{=} & \mathbf{\left[\dfrac{(n+1)\cdot n}{2}\right]^2} \\ \hline \end{array}\)

 

\(\mathbf{ q=\ ?}\)

\(\begin{array}{|rcll|} \hline \mathbf{q} & \mathbf{=} & \mathbf{\dfrac{(n+1)\cdot n}{2}\cdot \dfrac{(2n+1)}{3}} \quad | \quad \text{from the formula collection} \\ \hline \end{array} \)

 

\(\mathbf{ s=\ ?}\)

\(\begin{array}{|rcll|} \hline \mathbf{s} & \mathbf{=} & \mathbf{ \dfrac{1}{2}\cdot (S-q) } \\ &=& \dfrac{1}{2}\cdot \left(\left[\dfrac{(n+1)\cdot n}{2}\right]^2 - \dfrac{(n+1)\cdot n}{2}\cdot \dfrac{(2n+1)}{3} \right) \\ &=& \dfrac{(n+1)\cdot n}{4}\cdot \left[ \dfrac{(n+1)\cdot n}{2} - \dfrac{(2n+1)}{3} \right] \\ &=& \dfrac{(n+1)\cdot n}{24}\cdot \Big[ 3n(n+1) - 2(2n+1) \Big] \\ &=& \dfrac{(n+1)\cdot n\cdot ( 3n^2-n-2)}{24} \\ &=& \dfrac{(n+1)\cdot n\cdot (3n+2)\cdot (n-1)}{24} \\\\ \mathbf{s} & \mathbf{=} & \mathbf{\dfrac{(n-1)\cdot n \cdot (n+1)\cdot (3n+2)}{24} } \\ \hline \end{array}\)

 

Example: \([1,2,3,4,5]\)

So \(n = 5 \)

\(\begin{array}{|rcll|} \hline \mathbf{s} & \mathbf{=} & \mathbf{\dfrac{(5-1)\cdot 5 \cdot (5+1)\cdot (3\cdot 5+2)}{24} } \\ &=& \dfrac{4\cdot 5 \cdot 6\cdot 17}{24} \\ &=& 5 \cdot 17 \\ &\mathbf{=}& \mathbf{85}\ \checkmark\\ \hline \end{array}\)

 

Example:\( [1,2,3,4,5, \ldots ,4000]\)

So \(n = 4000\)

\(\begin{array}{|rcll|} \hline \mathbf{s} & \mathbf{=} & \mathbf{\dfrac{(4000-1)\cdot 4000 \cdot (4000+1)\cdot (3\cdot 4000+2)}{24} } \\ &=& \dfrac{3999\cdot 4000 \cdot 4001\cdot 12002 }{24} \\ &=& 1333\cdot 1000 \cdot 4001\cdot 6001 \\ &\mathbf{=}& \mathbf{32\ 005\ 331\ 333\ 000} \\ \hline \end{array} \)

 

 

laugh

 Jan 25, 2019
 #2
avatar
+1

This forms an arithmetic series with:
First term =8,002,000
Difference for each term= -(1/2(n^3+n^2) =31,973,323,333/7,998
Number of Terms =4,000
∑[8,002,000*n -(1/2(n^3+n^2)), n, 1, 4000]=32,005,331,333,000

 

Or, using AP Formula, we get:

4000/2*(8002000*2 + (31973323333/7998*3999))=32,005,331,333,000

 Jan 25, 2019
edited by Guest  Jan 25, 2019

29 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.