We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
352
2
avatar

\((19 \sqrt{h} +{4\sqrt{2h}})(19\sqrt{h} - 4\sqrt{2h)}\)

and explain the multiplication process

 Sep 27, 2017
 #1
avatar
0

simplify | (19 sqrt(h) + 4 sqrt(2 h)) (19 sqrt(h) - 4 sqrt(2 h))
361h - 76sqrt(2)h + 76sqrt(2)h - 32h
361h - 32h 
329h

 Sep 27, 2017
 #2
avatar+7543 
+1

Note that     (a + b)(a - b)  =  a2 - b2

 

So...           \(({\color{violet}\,19\sqrt{h}} + {\color{blue}4\sqrt{2h}})({\color{violet}\,19\sqrt{h}} - {\color{blue}4\sqrt{2h}})\,=\,({\color{violet}\,19\sqrt{h}})^2-( {\color{blue}4\sqrt{2h}})^2\)

 

\((\,19\sqrt{h})^2-( 4\sqrt{2h})^2 \\~\\ =\,19*19*\sqrt{h}*\sqrt{h}-4*4*\sqrt{2h}*\sqrt{2h} \\~\\ =\,361h-16*2h \\~\\ =\,361h-32h \\~\\ =\,329h\)

.
 Sep 27, 2017

7 Online Users