+0  
 
+1
407
2
avatar+5252 

Solve by any method:

4x-y+z=-5

2x+2y+3z=10

5x-2y+6z=1

 

I tried using Gaussian Elimination but I got kinda messed up, I'd appreciate some help. Thanks!

rarinstraw1195  Dec 19, 2017
 #1
avatar+91027 
+3

4x - y + z = -5    ⇒   8x - 2y + 2z  =  -10    (1)

2x + 2y + 3z =10       (2)

5x - 2y  + 6z = 1        (3)

 

 

Add (1)  and (2)

 

10x + 5z  = 0        ⇒    2x  + z  =  0   ⇒   z  =  - 2x     (4)

 

Add (2)  and (3)

 

7x + 9z  = 11    (5)

 

Sub (4)  into (5)

 

7x + 9 (-2x)  =  11

 

7x - 18x = 11

 

-11x  =  11

 

  x  =  -1

 

So.......z   =  -2(-1)  =  2

 

And using  4x - y + z = -5   to find y, we have

 

4(-1) - y +  2  =  -5

-4   -  y   +  2   = - 5

-2 - y   =  - 5

-y  =  - 3

y  =  3

 

So    {x, y, z }  =   ( -1, 3,  2 }

 

 

cool cool cool

CPhill  Dec 19, 2017
 #2
avatar+20116 
+2

Solve by any method:

4x-y+z=-5

2x+2y+3z=10

5x-2y+6z=1

 

I tried using Gaussian Elimination

 

 

Gaussian Elimination:

\(\left( \begin{matrix} 4 & -1 & 1 \\ 2 & 2 & 3 \\ 5 & -2 & 6 \end{matrix} \left| \begin{matrix} -5 \\ 10 \\ 1 \end{matrix} \right. \right) \\ \overset{II^{*}= 2\cdot II - I}{\curvearrowright} \left( \begin{matrix} 4 & -1 & 1 \\ 0 & 5 & 5 \\ 5 & -2 & 6 \end{matrix} \left| \begin{matrix} -5 \\ 25 \\ 1 \end{matrix} \right. \right) \\ \overset{III^{*}= \frac45 \cdot III - I}{\curvearrowright} \left( \begin{matrix} 4 & -1 & 1 \\ 0 & 5 & 5 \\ 0 & -\frac35 & \frac{19}{5} \end{matrix} \left| \begin{matrix} -5 \\ 25 \\ \frac{29}{5} \end{matrix} \right. \right) \\ \overset{III^{*}= \frac{25}{3} \cdot III + II}{\curvearrowright} \left( \begin{matrix} 4 & -1 & 1 \\ 0 & 5 & 5 \\ 0 & 0 & \frac{110}{3} \end{matrix} \left| \begin{matrix} -5 \\ 25 \\ \frac{220}{3} \end{matrix} \right. \right) \\\)

 

\(\begin{array}{|rcll|} \hline \frac{110}{3}z &=& \frac{220}{3}\\ z &=& \frac{220}{110} \\ \mathbf{z} &\mathbf{=}& \mathbf{2} \\\\ 5y+5z&=& 25 \\ 5y + 10 &=& 25 \\ 5y &=& 15 \\ \mathbf{y} &\mathbf{=}& \mathbf{3} \\\\ 4x-y+z &=& -5 \\ 4x - 3 + 2 &=& -5 \\ 4x &=& -4 \\ \mathbf{x} &\mathbf{=}& \mathbf{-1} \\ \hline \end{array}\)

 

 

laugh

heureka  Dec 20, 2017

33 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.