Solve by any method:
4x-y+z=-5
2x+2y+3z=10
5x-2y+6z=1
I tried using Gaussian Elimination but I got kinda messed up, I'd appreciate some help. Thanks!
4x - y + z = -5 ⇒ 8x - 2y + 2z = -10 (1)
2x + 2y + 3z =10 (2)
5x - 2y + 6z = 1 (3)
Add (1) and (2)
10x + 5z = 0 ⇒ 2x + z = 0 ⇒ z = - 2x (4)
Add (2) and (3)
7x + 9z = 11 (5)
Sub (4) into (5)
7x + 9 (-2x) = 11
7x - 18x = 11
-11x = 11
x = -1
So.......z = -2(-1) = 2
And using 4x - y + z = -5 to find y, we have
4(-1) - y + 2 = -5
-4 - y + 2 = - 5
-2 - y = - 5
-y = - 3
y = 3
So {x, y, z } = ( -1, 3, 2 }
Solve by any method:
4x-y+z=-5
2x+2y+3z=10
5x-2y+6z=1
I tried using Gaussian Elimination
Gaussian Elimination:
\(\left( \begin{matrix} 4 & -1 & 1 \\ 2 & 2 & 3 \\ 5 & -2 & 6 \end{matrix} \left| \begin{matrix} -5 \\ 10 \\ 1 \end{matrix} \right. \right) \\ \overset{II^{*}= 2\cdot II - I}{\curvearrowright} \left( \begin{matrix} 4 & -1 & 1 \\ 0 & 5 & 5 \\ 5 & -2 & 6 \end{matrix} \left| \begin{matrix} -5 \\ 25 \\ 1 \end{matrix} \right. \right) \\ \overset{III^{*}= \frac45 \cdot III - I}{\curvearrowright} \left( \begin{matrix} 4 & -1 & 1 \\ 0 & 5 & 5 \\ 0 & -\frac35 & \frac{19}{5} \end{matrix} \left| \begin{matrix} -5 \\ 25 \\ \frac{29}{5} \end{matrix} \right. \right) \\ \overset{III^{*}= \frac{25}{3} \cdot III + II}{\curvearrowright} \left( \begin{matrix} 4 & -1 & 1 \\ 0 & 5 & 5 \\ 0 & 0 & \frac{110}{3} \end{matrix} \left| \begin{matrix} -5 \\ 25 \\ \frac{220}{3} \end{matrix} \right. \right) \\\)
\(\begin{array}{|rcll|} \hline \frac{110}{3}z &=& \frac{220}{3}\\ z &=& \frac{220}{110} \\ \mathbf{z} &\mathbf{=}& \mathbf{2} \\\\ 5y+5z&=& 25 \\ 5y + 10 &=& 25 \\ 5y &=& 15 \\ \mathbf{y} &\mathbf{=}& \mathbf{3} \\\\ 4x-y+z &=& -5 \\ 4x - 3 + 2 &=& -5 \\ 4x &=& -4 \\ \mathbf{x} &\mathbf{=}& \mathbf{-1} \\ \hline \end{array}\)