+0  
 
0
86
1
avatar+464 

Here is my question

 

shreyas1  Oct 12, 2018
 #1
avatar+92759 
+2

The slant height of the cone is = BC

 

The volume of the cone is given by

 

432pi  = pi/3 * r^2 * height

 

432pi  = pi / 3 * 12^2  * height

 

432  = 144/3 * height      multiply both sides by 3/144

 

3 * 432  / 144  = height 

 

9 cm  = height

 

Now...the slant height of the cone  = √ [ r^2 +  h^2 ] = √[12^2 + 9^2] =√225  =15 cm = BC

 

So...the lateral surface area of the cone = the shaded area of the circle  =

 

pi * radius * slant height  =     pi * 12 * 15  =   180 pi  cm^2

 

 

And we can set up the following relationship

 

Total circumference of the circle / Total area of the circle = 

Total circumference of shaded area / Total area of shaded area

 

[2*pi * BC] /[ pi * BC^2]  =  [2pi *  BC * ( D /360)]  / [ 180pi ]

 

Where D is the number of degrees in the arc of the shaded sector

 

[2 * pi * 15]  /[ pi * 15^2 ] =[ 2 * pi * 15] * ( D / 360)] /[180pi]

 

1 / 15^2  =   (D / 360) / 180

 

1 / 15^2  = D / 64800

 

64800 / 225  = D = 288°

 

So...the number of degrees in ABC  = 360  - 288   =  72°

 

 

cool cool cool

CPhill  Oct 12, 2018
edited by CPhill  Oct 13, 2018
edited by CPhill  Oct 13, 2018

11 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.