+0  
 
0
1031
0
avatar+584 

If\(a(n+1)=1/2a(n)+10\)(1),and a(0)=50,find  an expression for a(n) with n.

Let \(a(n+1)+k=1/2(a(n)+k)\)    (2)

\(a(n+1)+k=1/2*a(n)+1/2*k\)

\(a(n+1)=1/2*a(n)-1/2*k\)

compare to the equatio (1),we find that k=-20

subsitute k=-20 into equation,we have

\(a(n+1)-20=1/2(a(n)-20)\)

or \((a(n+1)-20)/(a(n)-20)=1/2\)

\((a(n)-20)/(a(n-1)-20)=1/2\).......

I found a general equation for this with term n and b

\((a(n)-20)/(a(b)-20)={1/2}^{n-b}\)

I choose b=1,then

a(1)=1/2*a(0)+10=25+10=35

a(n)-20=(a(1)-20)(1/2)^(n-1)

a(n)=20+15*1/2^n*2=30*(1/2)^n+20

If I choose b=2,then

a(2)=1/2*a(1)+10=27.5

a(n)-20=(a(2)-20)*(1/2)^(n-2)=7.5*(1/2)^n*4=30*(1/2)^n

a(n)=20+30*(1/2)^n

Thanks for the solution,Maxwong.Any other about how to solve this problem would be wecome.

laugh

 
 Sep 6, 2016

2 Online Users

avatar
avatar