Rectangle ABCD is folded along BD, and point C lands on C1. BC1 and AD intersect at point E. AB=5, AD=10. What is the length of DE?
Note that, by AAS, triangle EC1D is congruent to triangle EAB
C1 D = AB = DC = 5
BC1 = BC = 10
And BD = √[C1D^2 + BC1^2] = √ [5^2 + 10^2 ] = √125
Note that BE^2 = AE^2 + AB^2 = AE^2 + 25
And BE = √[AE^2 + 25 ]
By the Law of Cosines, we have
AB^2 = AE^2 + BE^2 - 2 (AE * BE) cosAEB
5^2 = AE^2 + (AE^2 + 25) - 2(AE√[AE^2 + 25] )cos (AEB)
25 = AE^2 + AE^2 + 25 - 2 (AE √[AE^2 + 25] )cos(AEB)
[-2AE^2] / [ -2AE√[AE^2 + 25] = cos(AEB)
AE/ √[AE^2 + 25] = cos(AEB) (1)
Note that AEB and DEB are supplemental....so cos(DEB) = -cos(AEB)
So....using the Law of Cosines again, we have
BD^2 = BE^2 + BE^2 - 2(BE^2)(-cos(AEB))
125 = 2BE^2 + 2BE^2(cos(AEB) )
125 = 2[AE^2 + 25] - 2[AE^2 + 25] os(AEB)
125 = 2AE^2 + 50 - 2[AE^2 + 25] cos(AEB)
[75 - 2AE^2[ / [ 2(AE^2 + 25) ] = cos(AEB) (2)
Equate (1) and (2)
[75 - 2AE^2 ] / [ 2(AE^2 + 25)] = AE/ √[AE^2 + 25]
[75 - 2AE^2] /(AE^2 + 25) = 2AE/ √[AE^2 + 25]
[75- 2AE^2] / (AE^2 + 25) = 2AE√[AE^2 + 25] / (AE^2 + 25)
75 - 2AE^2 = 2AE√[AE^2 + 25] square both sides
5625 - 300AE^2 + 4AE^4 = 4AE^2 [ AE^2 + 25] simplify
5625 - 300AE^2 + 4AE^4 = 4AE^4 + 100AE^2
5625 = 400AE^2
5626/400 = AE^2
225/16 = AE^2
15/4 = AE
So
DE = AD - AE
DE = 10 - 15/4
DE = 40/4 - 15/4
DE = 25/4 = 6.25
Let AE = b
Let DE = c
AE + DE = AD
b + c = 10
And by the Pythagorean theorem....
b2 + 52 = c2
b2 + 25 = c2
Now we can find c .
b + c = 10 so b = 10 - c Use this value for b in the second equation.
b2 + 25 = c2
(10 - c)2 + 25 = c2
100 - 20c + c2 + 25 = c2
125 - 20c + c2 = c2
125 - 20c = 0
125 = 20c
125 / 20 = c
6.25 = c
Rectangle ABCD is folded along BD, and point C lands on C1. BC1 and AD intersect at point E.
AB=5, AD=10.
What is the length of DE?
Let AB=DC=b Let AD=BC=a Let DE=x Let CC′=p Let EE′=y Let BD=d
(1)d=√a2+b2b2=p⋅a(2)p=b2ay2=p(p−a)=b2a(b2a−a)=b2a(a2+b2a)=b2a2(a2+b2)(3)y=ba√a2+b2x2=(d2)2+(y2)2=(√a2+b22)2+(ba√a2+b22)2=a2+b24+b2a2⋅(a2+b2)4=a2+b24(1+b2a2)=(a2+b2)24a2x=(a2+b2)2a
a=10b=5DE=x=52+1022⋅10x=12520x=254x=6.25
The length of DE is 6.25