+0  
 
0
87
4
avatar+8 

Rectangle ABCD is folded along BD, and point C lands on C1. BC1 and AD intersect at point E. AB=5, AD=10. What is the length of DE?

ooojustwhy  Mar 18, 2018
 #1
avatar+86861 
+4

Note that, by AAS, triangle EC1D   is congruent to triangle EAB

 

C1 D  = AB  =  DC  = 5

BC1  = BC  = 10

And BD  = √[C1D^2 + BC1^2]  = √ [5^2 + 10^2 ]  = √125

 

Note that  BE^2   = AE^2 + AB^2   =  AE^2 + 25

And  BE  = √[AE^2 + 25 ]

 

By the Law of Cosines, we have

AB^2  = AE^2 + BE^2  - 2 (AE * BE) cosAEB

5^2  = AE^2 + (AE^2 + 25) - 2(AE√[AE^2 + 25] )cos (AEB)

25  = AE^2 + AE^2 + 25 - 2 (AE √[AE^2 + 25] )cos(AEB)

[-2AE^2] / [ -2AE√[AE^2 + 25]   = cos(AEB)

AE/ √[AE^2 + 25]  = cos(AEB)    (1)

 

Note that  AEB  and DEB  are supplemental....so  cos(DEB)  = -cos(AEB)

So....using the Law of Cosines again, we have

BD^2  =  BE^2 + BE^2  - 2(BE^2)(-cos(AEB))

125 = 2BE^2 + 2BE^2(cos(AEB) )

125 = 2[AE^2 + 25]  - 2[AE^2 + 25] os(AEB)

125 = 2AE^2 + 50 - 2[AE^2 + 25] cos(AEB)

[75 - 2AE^2[ / [ 2(AE^2 + 25) ]  = cos(AEB)   (2)

 

Equate  (1)  and (2)

 

[75 - 2AE^2 ] / [ 2(AE^2 + 25)] = AE/ √[AE^2 + 25] 

[75 - 2AE^2] /(AE^2 + 25)  = 2AE/ √[AE^2 + 25] 

[75- 2AE^2] / (AE^2 + 25)  = 2AE√[AE^2 + 25] / (AE^2 + 25)

75 - 2AE^2  = 2AE√[AE^2 + 25]     square both sides

5625 - 300AE^2 + 4AE^4   = 4AE^2 [ AE^2 + 25]     simplify

5625 - 300AE^2 + 4AE^4 = 4AE^4 + 100AE^2 

5625 =  400AE^2

5626/400 = AE^2

225/16  = AE^2

15/4  = AE

 

So

 

DE  =  AD  - AE

DE  =  10  - 15/4

DE  = 40/4  - 15/4

DE  = 25/4   =  6.25

 

 

cool cool cool

CPhill  Mar 19, 2018
 #2
avatar+7073 
+3

 

Let  AE  =  b

Let  DE  =  c

 

AE + DE  =  AD

b + c  =  10

 

And by the Pythagorean theorem....

 

b2 + 52  =  c2

b2 + 25  =  c2

 

Now we can find  c .

 

b + c  =  10        so        b  =  10 - c     Use this value for  b  in the second equation.

 

b2 + 25  =  c2

(10 - c)2 + 25  =  c2

100 - 20c + c2 + 25  =  c2

125 - 20c + c2  =  c2

125 - 20c  =  0

125  =  20c

125 / 20  =  c

6.25  =  c        smiley

hectictar  Mar 19, 2018
 #3
avatar+19482 
+1

Rectangle ABCD is folded along BD, and point C lands on C1. BC1 and AD intersect at point E.

AB=5, AD=10.

What is the length of DE?

 

 

\(\text{Let $AB=DC=b$ } \\ \text{Let $AD=BC=a$ } \\ \text{Let $DE=x$ } \\ \text{Let $CC'=p$ } \\ \text{Let $EE'=y$ } \\ \text{Let $BD=d$ } \)

 

\(\begin{array}{|lrcll|} \hline (1) & \mathbf{d} &\mathbf{=}& \mathbf{\sqrt{a^2+b^2}} \\ \hline & b^2 &=& p\cdot a \\ (2) & p &=& \dfrac{b^2}{a} \\ \hline & y^2 &=& p(p-a) \\ & &=& \dfrac{b^2}{a}\left(\dfrac{b^2}{a}-a \right) \\ & &=& \dfrac{b^2}{a}\left(\dfrac{a^2+b^2}{a} \right) \\ & &=& \dfrac{b^2}{a^2}\left(a^2+b^2\right) \\ (3) &\mathbf{y } &\mathbf{=}& \mathbf{\dfrac{b}{a}\sqrt{a^2+b^2}} \\ \hline & x^2 &=& \left(\dfrac{d}{2}\right)^2 + \left(\dfrac{y}{2}\right)^2 \\ & &=& \left(\dfrac{\sqrt{a^2+b^2}}{2}\right)^2 + \left(\dfrac{\dfrac{b}{a}\sqrt{a^2+b^2}}{2}\right)^2 \\ & &=& \dfrac{a^2+b^2}{4} + \dfrac{b^2}{a^2}\cdot \dfrac{(a^2+b^2)}{4} \\ & &=& \dfrac{a^2+b^2}{4} \left( 1+ \dfrac{b^2}{a^2}\right) \\ & &=& \dfrac{(a^2+b^2)^2}{4a^2} \\ &\mathbf{x } &\mathbf{=}& \mathbf{\dfrac{(a^2+b^2)}{2a}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline a&=&10 \\ b &=& 5 \\\\ DE=x &=& \dfrac{5^2+10^2}{2\cdot 10} \\ x &=& \dfrac{125}{20} \\ x &=& \dfrac{25}{4} \\ \mathbf{x } &\mathbf{=}& \mathbf{6.25} \\ \hline \end{array}\)

 

The length of DE is 6.25

 

laugh

heureka  Mar 19, 2018
edited by heureka  Mar 19, 2018
edited by heureka  Mar 19, 2018
 #4
avatar+19482 
0

Rectangle ABCD is folded along BD, and point C lands on C1. BC1 and AD intersect at point E.

AB=5, AD=10. What is the length of DE?

 

 

\(\text{Let $AB=DC=b$ } \\ \text{Let $AD=BC=a$ } \\ \text{Let $DE=BE'=E'C'=x$ } \\ \text{Let $BD=d$ } \)

 

\(\begin{array}{|rcll|} \hline d^2 &=& a\cdot 2x \\\\ x &=& \dfrac{d^2}{a} \quad & | \quad d^2 = a^2+b^2 \\ &\mathbf{x } &\mathbf{=}& \mathbf{\dfrac{a^2+b^2}{2a}} \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline a&=&10 \\ b &=& 5 \\\\ ED=x &=& \dfrac{5^2+10^2}{2\cdot 10} \\ x &=& \dfrac{125}{20} \\ x &=& \dfrac{25}{4} \\ \mathbf{x } &\mathbf{=}& \mathbf{6.25} \\ \hline \end{array}\)

 

 

laugh

heureka  Mar 20, 2018

12 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.