Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
711
4
avatar+8 

Rectangle ABCD is folded along BD, and point C lands on C1. BC1 and AD intersect at point E. AB=5, AD=10. What is the length of DE?

 Mar 18, 2018
 #1
avatar+130466 
+4

Note that, by AAS, triangle EC1D   is congruent to triangle EAB

 

C1 D  = AB  =  DC  = 5

BC1  = BC  = 10

And BD  = √[C1D^2 + BC1^2]  = √ [5^2 + 10^2 ]  = √125

 

Note that  BE^2   = AE^2 + AB^2   =  AE^2 + 25

And  BE  = √[AE^2 + 25 ]

 

By the Law of Cosines, we have

AB^2  = AE^2 + BE^2  - 2 (AE * BE) cosAEB

5^2  = AE^2 + (AE^2 + 25) - 2(AE√[AE^2 + 25] )cos (AEB)

25  = AE^2 + AE^2 + 25 - 2 (AE √[AE^2 + 25] )cos(AEB)

[-2AE^2] / [ -2AE√[AE^2 + 25]   = cos(AEB)

AE/ √[AE^2 + 25]  = cos(AEB)    (1)

 

Note that  AEB  and DEB  are supplemental....so  cos(DEB)  = -cos(AEB)

So....using the Law of Cosines again, we have

BD^2  =  BE^2 + BE^2  - 2(BE^2)(-cos(AEB))

125 = 2BE^2 + 2BE^2(cos(AEB) )

125 = 2[AE^2 + 25]  - 2[AE^2 + 25] os(AEB)

125 = 2AE^2 + 50 - 2[AE^2 + 25] cos(AEB)

[75 - 2AE^2[ / [ 2(AE^2 + 25) ]  = cos(AEB)   (2)

 

Equate  (1)  and (2)

 

[75 - 2AE^2 ] / [ 2(AE^2 + 25)] = AE/ √[AE^2 + 25] 

[75 - 2AE^2] /(AE^2 + 25)  = 2AE/ √[AE^2 + 25] 

[75- 2AE^2] / (AE^2 + 25)  = 2AE√[AE^2 + 25] / (AE^2 + 25)

75 - 2AE^2  = 2AE√[AE^2 + 25]     square both sides

5625 - 300AE^2 + 4AE^4   = 4AE^2 [ AE^2 + 25]     simplify

5625 - 300AE^2 + 4AE^4 = 4AE^4 + 100AE^2 

5625 =  400AE^2

5626/400 = AE^2

225/16  = AE^2

15/4  = AE

 

So

 

DE  =  AD  - AE

DE  =  10  - 15/4

DE  = 40/4  - 15/4

DE  = 25/4   =  6.25

 

 

cool cool cool

 Mar 19, 2018
 #2
avatar+9488 
+3

 

Let  AE  =  b

Let  DE  =  c

 

AE + DE  =  AD

b + c  =  10

 

And by the Pythagorean theorem....

 

b2 + 52  =  c2

b2 + 25  =  c2

 

Now we can find  c .

 

b + c  =  10        so        b  =  10 - c     Use this value for  b  in the second equation.

 

b2 + 25  =  c2

(10 - c)2 + 25  =  c2

100 - 20c + c2 + 25  =  c2

125 - 20c + c2  =  c2

125 - 20c  =  0

125  =  20c

125 / 20  =  c

6.25  =  c        smiley

 Mar 19, 2018
 #3
avatar+26396 
+1

Rectangle ABCD is folded along BD, and point C lands on C1. BC1 and AD intersect at point E.

AB=5, AD=10.

What is the length of DE?

 

 

Let AB=DC=b Let AD=BC=a Let DE=x Let CC=p Let EE=y Let BD=d 

 

(1)d=a2+b2b2=pa(2)p=b2ay2=p(pa)=b2a(b2aa)=b2a(a2+b2a)=b2a2(a2+b2)(3)y=baa2+b2x2=(d2)2+(y2)2=(a2+b22)2+(baa2+b22)2=a2+b24+b2a2(a2+b2)4=a2+b24(1+b2a2)=(a2+b2)24a2x=(a2+b2)2a

 

a=10b=5DE=x=52+102210x=12520x=254x=6.25

 

The length of DE is 6.25

 

laugh

 Mar 19, 2018
edited by heureka  Mar 19, 2018
edited by heureka  Mar 19, 2018
 #4
avatar+26396 
0

Rectangle ABCD is folded along BD, and point C lands on C1. BC1 and AD intersect at point E.

AB=5, AD=10. What is the length of DE?

 

 

Let AB=DC=b Let AD=BC=a Let DE=BE=EC=x Let BD=d 

 

d2=a2xx=d2a|d2=a2+b2x=a2+b22a

a=10b=5ED=x=52+102210x=12520x=254x=6.25

 

 

laugh

heureka  Mar 20, 2018

2 Online Users