Processing math: 100%
 
+0  
 
0
1305
7
avatar+262 

need a help please.

that's what i did:

(x^2+2x)^3+8x^3=0

x^6+6x^5+12x^4+8x^3=0

x^3(x^3+6x^2+12x+8)=0

x^3=0  ->   x=0

now what to  do with the brackets ? 

 Jun 8, 2015

Best Answer 

 #1
avatar
+8

 

(x(x+2))^3 +8x^3=0

x^3(x+2)^3 +8x^3 =0

 

Which as you said gives:

x^3((x+2)^3 +8)=0

Your two roots are given by

x^3 =0 \to x=0

and

(x+2)^3 +8 =0

Therefore

x+2 = \sqrt[3]{-8} = -\sqrt[3]{8} = -2

Finally:

x=-2-2 = -4

 Jun 8, 2015
 #1
avatar
+8
Best Answer

 

(x(x+2))^3 +8x^3=0

x^3(x+2)^3 +8x^3 =0

 

Which as you said gives:

x^3((x+2)^3 +8)=0

Your two roots are given by

x^3 =0 \to x=0

and

(x+2)^3 +8 =0

Therefore

x+2 = \sqrt[3]{-8} = -\sqrt[3]{8} = -2

Finally:

x=-2-2 = -4

Guest Jun 8, 2015
 #2
avatar+26397 
+5

A:

\small{\text{$ \begin{array}{rcl} \mathbf{ \left[~x \left( x+2 \right) \right~]^3 + 8 x^3 } &\mathbf{ =}& \mathbf{0} \\ x^3 \left( x+2 \right)^3 + 8 x^3 &=& 0\\ x^3 \left( x^3+3x^2\cdot 2 + 3x\cdot 2^2 + 2^3 \right) + 8 x^3 &=& 0\\ x^3 \left( x^3+6x^2 + 12x + 8 \right) + 8 x^3 &=& 0\\ x^3 \left( x^3+6x^2 + 12x + 8 +8\right) &=& 0\\ x^3 \left( x^3+6x^2 + 12x + 16 \right) &=& 0\\ \end{array}  $}}

I. First solution

x3=0x=0

II. Second solution

x3+6x2+12x+16=(x+4)(x2+2x+4)=0x=4

III. No more solutions

x2+2x+4=0

The parabola has no solutions, because the vertex of this parabola (-1 | 3) lies above the x-axis

 

B:

\small{\text{$ \begin{array}{rcl} \mathbf{ \left[~x \left( x+2 \right) \right~]^3 + 8 x^3 } &\mathbf{ =}& \mathbf{0} \\ x^3 \left( x+2 \right)^3 + 8 x^3 &=& 0\\ x^3 \left[~~\left( x+2 \right)^3 + 8~~\right] &=& 0\\ \end{array}  $}}

I. First solution:

x3=0x=0

 

II. Second solution:

(x+2)3+8=0(x+2)3=8|3x+2=38x+2=2x=22x=4

 Jun 8, 2015
 #3
avatar+118703 
+5

Thanks Heureka,

I would have done this as the sum of 2 cubes

 

 

a3+b3=(a+b)(a2ab+b2)(x(x+2))3+8x3=0x3((x+2)3+8)=0x=0or(x+2)3+23=0((x+2)+2)((x+2)22(x+2)+22)=0(x+4)(x2+4x+42x4+4)=0

 

(x+4)(x2+2x+4)=0x=4orx2+2x+4=0$Thishasnorealroots.So$x=0orx=4

 

ACTUALLY, NOW I LOOK AT IT, HEUREKA'S ANSWER IS BETTER :)

 Jun 8, 2015
 #4
avatar+118703 
0

Hi anon,

Thankyou for trying to answer.

You can no longer post pictures unless you are a member.

Why don't you join up.  It is super easy, you just need to choose a username and a passsword :)

 Jun 8, 2015
 #5
avatar+262 
+5

heureka i still dont understand the brackets part

why :x^3+6x^2+12x+16  -> (x+4)(x^2+2x+4)

 Jun 8, 2015
 #6
avatar+118703 
+5

Heureka's Part B method is much easier to follow.

 

 

Heureka would have got that factorisation by algebraic division.    

 Jun 8, 2015
 #7
avatar+26397 
+5

heureka i still dont understand the brackets part

why :x^3+6x^2+12x+16  -> (x+4)(x^2+2x+4)

 

Hallo sabi92,

I.  x3+6x2+12x+16:

  x=4(4)3+6(4)2+12(4)+16=64+9648+16=0 

II.   algebraic division:

x3+6x2+12x+16  :  (x+4)=x2+2x+4

 Jun 9, 2015

0 Online Users