need a help please.
that's what i did:
(x^2+2x)^3+8x^3=0
x^6+6x^5+12x^4+8x^3=0
x^3(x^3+6x^2+12x+8)=0
x^3=0 -> x=0
now what to do with the brackets ?
Which as you said gives:
Your two roots are given by
and
Therefore
Finally:
A:
\small{\text{$ \begin{array}{rcl} \mathbf{ \left[~x \left( x+2 \right) \right~]^3 + 8 x^3 } &\mathbf{ =}& \mathbf{0} \\ x^3 \left( x+2 \right)^3 + 8 x^3 &=& 0\\ x^3 \left( x^3+3x^2\cdot 2 + 3x\cdot 2^2 + 2^3 \right) + 8 x^3 &=& 0\\ x^3 \left( x^3+6x^2 + 12x + 8 \right) + 8 x^3 &=& 0\\ x^3 \left( x^3+6x^2 + 12x + 8 +8\right) &=& 0\\ x^3 \left( x^3+6x^2 + 12x + 16 \right) &=& 0\\ \end{array} $}}
I. First solution
x3=0⇒x=0
II. Second solution
x3+6x2+12x+16⏟=(x+4)(x2+2x+4)=0⇒x=−4
III. No more solutions
x2+2x+4=0
The parabola has no solutions, because the vertex of this parabola (-1 | 3) lies above the x-axis
B:
\small{\text{$ \begin{array}{rcl} \mathbf{ \left[~x \left( x+2 \right) \right~]^3 + 8 x^3 } &\mathbf{ =}& \mathbf{0} \\ x^3 \left( x+2 \right)^3 + 8 x^3 &=& 0\\ x^3 \left[~~\left( x+2 \right)^3 + 8~~\right] &=& 0\\ \end{array} $}}
I. First solution:
x3=0⇒x=0
II. Second solution:
(x+2)3+8=0(x+2)3=−8|3√x+2=3√−8x+2=−2x=−2−2x=−4
Thanks Heureka,
I would have done this as the sum of 2 cubes
a3+b3=(a+b)(a2−ab+b2)(x(x+2))3+8x3=0x3((x+2)3+8)=0x=0or(x+2)3+23=0((x+2)+2)((x+2)2−2(x+2)+22)=0(x+4)(x2+4x+4−2x−4+4)=0
(x+4)(x2+2x+4)=0x=−4orx2+2x+4=0$Thishasnorealroots.So$x=0orx=−4
ACTUALLY, NOW I LOOK AT IT, HEUREKA'S ANSWER IS BETTER :)
Hi anon,
Thankyou for trying to answer.
You can no longer post pictures unless you are a member.
Why don't you join up. It is super easy, you just need to choose a username and a passsword :)
heureka i still dont understand the brackets part
why :x^3+6x^2+12x+16 -> (x+4)(x^2+2x+4)