+0  
 
0
2047
6
avatar+250 

Question:

Solve the PDE utt = uxx  where u(x,0) = e(-x^2)  ,  ut(x,0) = d/dx(e-x^2) using d'Alembert's solution. Sketch the solutions at t= 0 , 1, 10.

Problem I'm having is that we spent one 50 minute lecture on this, and 40 minutes of the lecture was deriving d'Alembert's general solution to an Initial Value Problem so I'm clueless on how to actually use his formula.

d'Alemberts general soln to an IVP: 

u(x,t) = 1/2[f(x-at)+f(x+at)] + 1/2a $$\int_{x-at}^{x+at} \mathrm{g}{(s)}\,\mathrm{d}s$$  In this case a = 1.

Any help at all is appreciated.

difficulty advanced
 May 6, 2015

Best Answer 

 #5
avatar+26387 
+20

Question:

 u(x,0) = e(-x^2)  ,  ut(x,0) = d/dx(e-x^2)

Solve  using d'Alembert's solution

u(x,t) = 1/2[f(x-at)+f(x+at)] + 1/2a $$\int_{x-at}^{x+at} \mathrm{g}{(s)}\,\mathrm{d}s$$  In this case a = 1.

 

$$u(x,0) = g(x) = e^{-x^2} \qquad
\boxed{
g(x-t) = e^{-(x-t)^2} \qquad
g(x+t) = e^{-(x+t)^2} }$$

$$u_t(x,0) = h(x) = \dfrac{d\left( e^{-x^2} \right)}{dx} \qquad
\boxed{
\int_{x-t}^{x+t} h(\xi) \, d\xi. = \int_{x-t}^{x+t} \dfrac{d\left( e^{-\xi^2} \right)}{d\xi} = \left[ e^{-\xi^2} \right]^{x+t}_\limits_{x-t}\\
}$$

 

 

 

$$u(x,t) = \frac{1}{2}\left[g(x-t) + g(x+t)\right] + \frac{1}{2} \int_{x-t}^{x+t} h(\xi) \, d\xi.\\\\
u(x,t) = \frac{1}{2}\left[ e^{-(x-t)^2} + e^{-(x+t)^2}\right]
+\frac{1}{2}\left[ e^{-\xi^2} \right]^{x+t}_\limits_{x-t}$$

$$u(x,t) = \frac{1}{2} \left[ e^{-(x-t)^2} + e^{-(x+t)^2}\right]
+\frac{1}{2} \left[ e^{-(x+t)^2} - e^{-(x-t)^2} \right]\\\\
u(x,t) = \frac{1}{2} \left[ e^{-(x+t)^2}\right]
+\frac{1}{2} \left[ e^{-(x+t)^2} } \right]\\\\
\boxed{ u(x,t) = e^{-(x+t)^2} }\\\\
u(x,0) = e^{-(x)^2}\\
u(x,1) = e^{-(x+1)^2}\\
u(x,10) = e^{-(x+10)^2}$$

 May 6, 2015
 #1
avatar+413 
0

41.024382993532i

 May 6, 2015
 #2
avatar+33657 
+15

Here f(x-at) = e-(x-t)^2 and g(s) = -2s*e-s^2 so:

 

pde solution

I'll leave you to sketch the solutions.

 

(Note: for f use u(x,0), and for g use ut(x,0)) 

 May 6, 2015
 #3
avatar+250 
0

Thanks a lot Alan, cant thumbs up enough =)

 May 6, 2015
 #4
avatar+33657 
0

You're welcome!

 May 6, 2015
 #5
avatar+26387 
+20
Best Answer

Question:

 u(x,0) = e(-x^2)  ,  ut(x,0) = d/dx(e-x^2)

Solve  using d'Alembert's solution

u(x,t) = 1/2[f(x-at)+f(x+at)] + 1/2a $$\int_{x-at}^{x+at} \mathrm{g}{(s)}\,\mathrm{d}s$$  In this case a = 1.

 

$$u(x,0) = g(x) = e^{-x^2} \qquad
\boxed{
g(x-t) = e^{-(x-t)^2} \qquad
g(x+t) = e^{-(x+t)^2} }$$

$$u_t(x,0) = h(x) = \dfrac{d\left( e^{-x^2} \right)}{dx} \qquad
\boxed{
\int_{x-t}^{x+t} h(\xi) \, d\xi. = \int_{x-t}^{x+t} \dfrac{d\left( e^{-\xi^2} \right)}{d\xi} = \left[ e^{-\xi^2} \right]^{x+t}_\limits_{x-t}\\
}$$

 

 

 

$$u(x,t) = \frac{1}{2}\left[g(x-t) + g(x+t)\right] + \frac{1}{2} \int_{x-t}^{x+t} h(\xi) \, d\xi.\\\\
u(x,t) = \frac{1}{2}\left[ e^{-(x-t)^2} + e^{-(x+t)^2}\right]
+\frac{1}{2}\left[ e^{-\xi^2} \right]^{x+t}_\limits_{x-t}$$

$$u(x,t) = \frac{1}{2} \left[ e^{-(x-t)^2} + e^{-(x+t)^2}\right]
+\frac{1}{2} \left[ e^{-(x+t)^2} - e^{-(x-t)^2} \right]\\\\
u(x,t) = \frac{1}{2} \left[ e^{-(x+t)^2}\right]
+\frac{1}{2} \left[ e^{-(x+t)^2} } \right]\\\\
\boxed{ u(x,t) = e^{-(x+t)^2} }\\\\
u(x,0) = e^{-(x)^2}\\
u(x,1) = e^{-(x+1)^2}\\
u(x,10) = e^{-(x+10)^2}$$

heureka May 6, 2015
 #6
avatar+118667 
0

I'll help with my thumb too :)

Thanks Alan and Heureka   

 May 6, 2015

1 Online Users

avatar