Question:
Solve the PDE utt = uxx where u(x,0) = e(-x^2) , ut(x,0) = d/dx(e-x^2) using d'Alembert's solution. Sketch the solutions at t= 0 , 1, 10.
Problem I'm having is that we spent one 50 minute lecture on this, and 40 minutes of the lecture was deriving d'Alembert's general solution to an Initial Value Problem so I'm clueless on how to actually use his formula.
d'Alemberts general soln to an IVP:
u(x,t) = 1/2[f(x-at)+f(x+at)] + 1/2a $$\int_{x-at}^{x+at} \mathrm{g}{(s)}\,\mathrm{d}s$$ In this case a = 1.
Any help at all is appreciated.
Question:
u(x,0) = e(-x^2) , ut(x,0) = d/dx(e-x^2)
Solve using d'Alembert's solution
u(x,t) = 1/2[f(x-at)+f(x+at)] + 1/2a $$\int_{x-at}^{x+at} \mathrm{g}{(s)}\,\mathrm{d}s$$ In this case a = 1.
$$u(x,0) = g(x) = e^{-x^2} \qquad
\boxed{
g(x-t) = e^{-(x-t)^2} \qquad
g(x+t) = e^{-(x+t)^2} }$$
$$u_t(x,0) = h(x) = \dfrac{d\left( e^{-x^2} \right)}{dx} \qquad
\boxed{
\int_{x-t}^{x+t} h(\xi) \, d\xi. = \int_{x-t}^{x+t} \dfrac{d\left( e^{-\xi^2} \right)}{d\xi} = \left[ e^{-\xi^2} \right]^{x+t}_\limits_{x-t}\\
}$$
$$u(x,t) = \frac{1}{2}\left[g(x-t) + g(x+t)\right] + \frac{1}{2} \int_{x-t}^{x+t} h(\xi) \, d\xi.\\\\
u(x,t) = \frac{1}{2}\left[ e^{-(x-t)^2} + e^{-(x+t)^2}\right]
+\frac{1}{2}\left[ e^{-\xi^2} \right]^{x+t}_\limits_{x-t}$$
$$u(x,t) = \frac{1}{2} \left[ e^{-(x-t)^2} + e^{-(x+t)^2}\right]
+\frac{1}{2} \left[ e^{-(x+t)^2} - e^{-(x-t)^2} \right]\\\\
u(x,t) = \frac{1}{2} \left[ e^{-(x+t)^2}\right]
+\frac{1}{2} \left[ e^{-(x+t)^2} } \right]\\\\
\boxed{ u(x,t) = e^{-(x+t)^2} }\\\\
u(x,0) = e^{-(x)^2}\\
u(x,1) = e^{-(x+1)^2}\\
u(x,10) = e^{-(x+10)^2}$$
Here f(x-at) = e-(x-t)^2 and g(s) = -2s*e-s^2 so:
I'll leave you to sketch the solutions.
(Note: for f use u(x,0), and for g use ut(x,0))
Question:
u(x,0) = e(-x^2) , ut(x,0) = d/dx(e-x^2)
Solve using d'Alembert's solution
u(x,t) = 1/2[f(x-at)+f(x+at)] + 1/2a $$\int_{x-at}^{x+at} \mathrm{g}{(s)}\,\mathrm{d}s$$ In this case a = 1.
$$u(x,0) = g(x) = e^{-x^2} \qquad
\boxed{
g(x-t) = e^{-(x-t)^2} \qquad
g(x+t) = e^{-(x+t)^2} }$$
$$u_t(x,0) = h(x) = \dfrac{d\left( e^{-x^2} \right)}{dx} \qquad
\boxed{
\int_{x-t}^{x+t} h(\xi) \, d\xi. = \int_{x-t}^{x+t} \dfrac{d\left( e^{-\xi^2} \right)}{d\xi} = \left[ e^{-\xi^2} \right]^{x+t}_\limits_{x-t}\\
}$$
$$u(x,t) = \frac{1}{2}\left[g(x-t) + g(x+t)\right] + \frac{1}{2} \int_{x-t}^{x+t} h(\xi) \, d\xi.\\\\
u(x,t) = \frac{1}{2}\left[ e^{-(x-t)^2} + e^{-(x+t)^2}\right]
+\frac{1}{2}\left[ e^{-\xi^2} \right]^{x+t}_\limits_{x-t}$$
$$u(x,t) = \frac{1}{2} \left[ e^{-(x-t)^2} + e^{-(x+t)^2}\right]
+\frac{1}{2} \left[ e^{-(x+t)^2} - e^{-(x-t)^2} \right]\\\\
u(x,t) = \frac{1}{2} \left[ e^{-(x+t)^2}\right]
+\frac{1}{2} \left[ e^{-(x+t)^2} } \right]\\\\
\boxed{ u(x,t) = e^{-(x+t)^2} }\\\\
u(x,0) = e^{-(x)^2}\\
u(x,1) = e^{-(x+1)^2}\\
u(x,10) = e^{-(x+10)^2}$$