+0  
 
0
263
1
avatar

For what constant $k$ is 1 the minimum value of the quadratic $3x^2 - 15x + k$ over all real values of $x$? ($x$ cannot be nonreal)

Guest Jan 18, 2018

Best Answer 

 #1
avatar+7096 
+1

the  x  coordinate of the minimum   =   -(-15) / [ 2(3) ]   =   15/6   =   5/2

 

the  y  coordinate of the minimum   =   3(5/2)^2 - 15(5/2) + k

 

1   =   3(5/2)^2 - 15(5/2) + k

 

1   =   3(25/4) - 75/2 + k

 

1   =   75/4 - 75/2 + k

 

1  =   -75/4 + k

 

1 + 75/4   =   k

 

79/4   =   k

hectictar  Jan 18, 2018
 #1
avatar+7096 
+1
Best Answer

the  x  coordinate of the minimum   =   -(-15) / [ 2(3) ]   =   15/6   =   5/2

 

the  y  coordinate of the minimum   =   3(5/2)^2 - 15(5/2) + k

 

1   =   3(5/2)^2 - 15(5/2) + k

 

1   =   3(25/4) - 75/2 + k

 

1   =   75/4 - 75/2 + k

 

1  =   -75/4 + k

 

1 + 75/4   =   k

 

79/4   =   k

hectictar  Jan 18, 2018

4 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.