+0  
 
-1
124
1
avatar

Let \(p(x)=\sqrt{-x}\), and \(q(x)=8x^2+10x-3\). What is the domain of \(p(q(x))\)? Your answer will be of the form \(a\le x \le b\). Find \(b-a\).

Guest Feb 10, 2018
 #1
avatar+89953 
+1

p(x)   = √ [ -x ]    q(x)  = 8x^2 + 10x - 3

 

So   p(q(x) )    =     √  [ - ( 8x^2 + 10x - 3 ]   =  √ [  3 - 8x^2 - 10x ]

 

We want to find the x values that make

 

3 - 8x^2 -10x  =  0     multiply through by -1

 

8x^2  + 10x  -  3  =   0  factor

 

(4x  - 1) (2x + 3)  = 0

 

Setting both factors to 0 and solving for x we have that  x  = 1/4   and x  = -3/2

 

However......the quantity under the radical, 3 - 8x^2 - 10x   must be ≥ 0

 

So...we have three possible intervals that may solve this

 

(-inf, -3/2] U [ -3/2, 1/4}] U {1/4, inf )

 

We only need to test a point in  the middle interval..if it "works," this interval will solve the equation

 

3 - 8x^2 - 10x ≥  0

 

Testing  x  = 0  will make this true, so the interval that solves the equation is

 

-3/2  ≤ x  ≤ 1/4

 

So  b  -  a   =     1/4  - (-3/2)   =   1/4  - (-6/4)   =   7 / 4

 

 

cool cool cool

CPhill  Feb 10, 2018

25 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.